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Abstract

We examine a two-bidder auction setting in which the distributions for the bidders’ valuations are asym-

metric over a support consisting of three elements. For the first price auction we derive the unique Bayes

Nash Equilibrium in closed form, which allows to obtain more precise results with respect to the classical

results in the literature on how asymmetries affect equilibrium bidding. Then we compare the revenue in the

first price auction with the revenue in the second price auction. The latter is often superior to the former

and we determine precisely, given a distribution for the value of the weak bidder, when a distribution for

the value of the strong bidder exists such that the first price auction is superior to the second price auction.

For two particular asymmetries, shift and stretch, we show that in our setting the results are quite different

from the results which are well-known in the literature.

1 Introduction

This paper is about an auction setting in which bidders have asymmetrically distributed values, but for which

it is possible to characterize in closed form the unique Bayes Nash Equilibrium for the first price auction.

This allows to derive quite accurate results on the effects of asymmetries on equilibrium bidding, and on the

revenue comparison between the first price auction and the second price auction.

In the standard auction setting, bidders have private values which are ex ante i.i.d. random variables; this

delivers many significant results for the standard setting. Conversely, the important and realistic extension in
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which bidders have asymmetrically distributed values is more difficult to deal with for a variety of auctions,

for instance for the first price auction (FPA), because asymmetric distributions often prevent the existence

of a closed form for the equilibrium bidding functions1 — one exception is the second price auction (SPA), in

which bidding the own valuation is a weakly dominant strategy for each bidder. This makes it difficult, in an

asymmetric environment, to compare the revenues from different auction formats, or to perform comparative

statics analysis about the effect of a change in the distributions of the valuations.

In this paper we examine a setting with two bidders in which the valuation of each bidder has the same

support {   }, with  −  =  −   0, but the probability distribution for 1, the value of

bidder 1, may be different from the probability distribution for 2, the value of bidder 2.
2 We use  and

, respectively, to denote Pr{ = } and Pr{ = }, respectively, hence Pr{ = } = 1−  − , for

 = 1 2. The only restriction we impose on these probabilities is the innocuous inequality

1 + 1 ≤ 2 + 2 (1)

that is Pr{1 = } ≥ Pr{2 = }.
We determine in closed form the unique Bayes Nash Equilibrium for the FPA, which involves mixed

strategies for both bidders. Our equilibrium characterization allows to identify precisely the effects of asym-

metric distributions on equilibrium bidding with respect to a symmetric environment.3 Specifically, well

known results in the literature are that the ex ante weak bidder bids more aggressively than the ex ante

strong bidder, but the overall bid distribution of the strong bidder is stronger than the bid distribution of the

weak bidder. In particular, first order stochastic dominance between the value distributions suffices for the

latter result, and conditional stochastic dominance suffices for the former result.4 In our setting, given (1), if

there is a weak bidder then it is bidder 2 and we show that the overall bid distribution of bidder 1 is stronger

than the bid distribution of bidder 2 if and only if (1) holds with strict inequality, a condition less restrictive

than first order stochastic dominance.5 Likewise, we identify a necessary and sufficient condition for bidder

2 to bid more aggressively than bidder 1 which is less restrictive than conditional stochastic dominance.

Then we move to compare the FPA and the SPA in terms of revenue. In this regard, it is useful to notice

that the supports of the bids submitted by type 1 and type 2 share the same maximum bid, which implies

that these types have the same utility, and this typically has the consequence that type 1 (or type 2 , but

not both) puts a probability mass on the bid . This "mass" feature of the equilibrium in the FPA increases

the winning probability and the utility for type 1 or for type 2 above the winning probability and the

utility under the SPA. In fact, when 1+1+2  2 we find that type 1 bids  with probability 1, and

also type 1 puts a probability mass on . This occurs because type 1 earns utility at least 2(−) if
he bids  (or just above ), which implies that his equilibrium utility, and in particular his utility from the

common maximum bid, is no less than 2( − ). Therefore also the utility of type 2 from the common

maximum bid is no less than 2( − ), and if 2 is large relative to 1 1 2, then 2( − ) turns

out to be greater than 2 ’s utility from the lowest bid in 2 ’s support. This makes 2 prefer to bid the

common maximum bid as a pure strategy, which is not consistent with equilibrium. Equilibrium requires

that the utility from the lowest bid in 2 ’s support is increased, which occurs when type 1 bids  with a

1Plum (1992), Cheng (2006), Kaplan and Zamir (2012) derive equilibrium for the FPA in closed form for specific settings.
2Maskin and Riley (1983), Maskin and Riley (1985), Cheng (2011), Doni and Menicucci (2013) examine settings with

discretely distributed values, but restrict to cases in which the value of each bidder has a binary support.
3The availability of a closed form for the equilibrium strategies allows also to examine a bidder’s incentives to invest ex ante

in order to improve the value distribution, an issue we briefly discuss in the conclusions, for a procurement setting.
4 See Lebrun (1998), Maskin and Riley (2000a), Li and Riley (2007), Kirkegaard (2009).
5The two distributions are equal if (1) holds with equality.
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positive probability such that type 2 is indifferent between the lowest bid in his support and the common

maximum bid. In this case the equilibrium strategies do not depend on 1 1.

Since the SPA allocates the object efficiently but the FPA does not, a sufficient condition for  , the

expected revenue under the SPA, to be higher than  , the expected revenue under the FPA, is that the

bidders’ rents in the FPA are greater than in the SPA. We prove that this often occurs because of the mass

feature of the equilibrium for the FPA.6 More in detail, we show that some probability distributions for 2

are such that  ≥  for each distribution for 1: this is the case when 2 + 2 ≤ 1
2
and/or 2 is quite

different from 2 (see Figure 2 in Subsection 4.2.1). If instead 2 + 2 
1
2
and 2 is not too different from

2, then there exists at least one distribution for 1 such that 
   , and it is a distribution which

induces the strongest bidding in the FPA by both bidders.

When 2 + 2 
1
2
and 2 is large given 2 ≤ 2, if 

   holds for some (1 1) then it holds if

1 = 0, 1 = 0, that is if Pr{1 = } = 1. This makes it intuitive that    requires 2 + 2 not

too small, as a small 2 + 2 makes Pr{2 = } large, which jointly with Pr{1 = } = 1 makes likely
the state of the world (1 2) = (  ) in which the revenue in the SPA is  , the highest possible — this

gives the SPA a significant advantage. It is also intuitive why a large 2, given 2 ≤ 2, makes it more likely

that    holds: a large 2 increases the probability that (1 2) = (  ) is the state of the world,

in which the revenue in the SPA is  (the lowest possible) and moreover we can show that when 1 = 0

and 1 = 0, bidder 1 bids no less than  ; thus in each state of the world, included (1 2) = (  ),

the revenue from the FPA is no less than  . Hence an increase in 2 makes more likely a state in which

the FPA yields at least  −  more than the SPA. Moreover, an increase in 2 lowers the probability

1− 2 − 2 that the state of the world is (1 2) = (  ), in which the revenue in the SPA is  .
7

When 2 + 2 
1
2
and 2 is large given 2  2, if 

   holds for some (1 1) then it holds if

1 = 2 − 2, 1 = 0, but not necessarily if 1 = 0, 1 = 0. The reason is that starting from 1 = 2 − 2,

1 = 0, a reduction of 1 to 0 would not change bidding in the FPA since we mentioned above that such

bidding does not depend on 1 1 when 1+1+2 ≤ 2. But the reduction in 1 improves bidder 1’s bid

distribution in the SPA, hence increases  . Given 1 = 2 − 2, 1 = 0, when 2 is large given 2  2,

we have that 2 is close to 2, a situation analogous to the one described in the above paragraph, with

   . But a reduction of 2 such that 2 becomes close to 0 weakens significantly the bidding in the

FPA as the overall bid distribution of bidder 1 puts a probability mass of 2 − 2 on the bid  which

increases as 2 decreases. Actually, given 1 = 2 − 2, the reduction of 2 weakens the bidding also in the

SPA, but such effect is dominated by the former effect and as a result    when 2 is close to zero.

Maskin and Riley (1985) prove that    always holds in a setting in which each bidder’s value

has a (same) binary support. Conversely, in our setting with ternary support it possible that  is greater

than  . We explain that this occurs because starting from a symmetric setting, with  =  , a suitable

improvement in a bidder’s value distribution increases  and  , which in some cases results in    .

But when the support is binary, any improvement in the value distribution of a bidder has the effect of

increasing  , while  does not change as neither bidder changes his bid distribution in FPA.

Finally, we examine the shift model and the stretch model introduced in Maskin and Riley (2000a), for

which Kirkegaard (2012) establishes that the FPA generates a higher revenue than the SPA, under slightly

more general assumptions than Maskin and Riley (2000a). For each of these models we determine precisely

when    in our setting and obtain significantly different results with respect to Kirkegaard (2012).

6Conversely, the literature has identified several settings in which the opposite result,    , holds: see for instance

Maskin and Riley (2000a), Li and Riley (2007), Kirkegaard (2012), Kirkegaard (2014), Kirkegaard (2021).
7The reverse of this argument suggests why    when 2 is about zero.
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Precisely, in the shift model    holds unless the weak distribution (from which the strong distribution

is obtained through a rightward shift) is relatively strong. In the stretch model, when the weak distribution

(from which the strong distribution is obtained through a stretch) is very weak, we find that any significant

stretch leads to    .

The rest of the paper is organized as follows: Section 2 introduces the auction environment. Section 3

is about equilibrium bidding in the FPA and the effect of asymmetry on equilibrium bidding. Section 4

compares the FPA and the SPA in terms of revenue. Section 5 concludes. The appendix provides the proofs

for some of our results. The missing proofs are available in Ceesay, Doni, Menicucci (2024).

2 Model

A (female) seller owns an object to which she attaches no value and faces two (male) bidders interested in

buying the object. Bidder 1 (bidder 2) privately observes his own monetary value 1 (2) for the object,

which is equal either to , or to  , or to  , with  ≥ 0 and  = +∆,  = +∆ for a positive ∆.

Bidder 2 and the seller view 1 as a realization of a random variable for which the probabilities of    

are denoted with 1 1 1:

1 = Pr{1 = }  0, 1 = Pr{1 = }  0, 1 = Pr{1 = }  0

Likewise, bidder 1 and the seller view 2 as a realization of a random variable — which is stochastically

independent of 1 — for which 2 2 2 denote the probabilities of     :
8

2 = Pr{2 = }  0, 2 = Pr{2 = }  0, 2 = Pr{2 = }  0

Although the two random variables have the same support {   }, they are asymmetrically dis-
tributed unless (1 1 1) = (2 2 2). The expected utility of each bidder is given by his value times his

probability to win the object, minus his expected payment. The seller is risk neutral.

3 Equilibrium bidding

3.1 Equilibrium bidding in the FPA

When the seller offers the object through a FPA, each bidder simultaneously submits a sealed bid, the highest

bidder wins and pays his bid to the seller. For some tie-breaking rules, no pure-strategy equilibrium exists in

this game, but Proposition 2 in Maskin and Riley (2000b) establishes that an equilibrium, possibly in mixed

strategies, exists under the "Vickrey tie-breaking rule", according to which in the in the FPA each bidder 

is required to submit both an "ordinary" bid  ≥ 0 and a "tie-breaker" bid  ≥ 0.9 The tie-breaking rule
(see Maskin and Riley (2000b) for a complete description) specifies that 1 2 matter only when 1 = 2,

and implies that for each bidder  it is weakly dominant to submit a tie-breaking bid  equal to  − ;

hence, in describing a strategy of bidder  in the following we implicitly assume that to each  is associated

 =  − . As a result, when 1 = 2 the bidder with the highest value wins and pays to the seller the

value of the other bidder.

8Although we require here   0   0   0 for  = 1 2, in the following we consider sometimes the case in which

some of the above probabilities are zero. In such case the equilibrium can be obtained by applying a limit argument to the

equilibrium obtained when   0   0   0 for  = 1 2.
9A very similar idea appears in Lebrun (2002), in the auction denoted with ̄.
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Proposition 1 in Subsection 3.1.2 identifies, for each parameter values, an equilibrium for the FPA with

the Vickrey tie-breaking rule. Next subsection introduces some notation and basic equilibrium properties.

3.1.1 Some equilibrium properties

We use  to denote type  of bidder , for  =  and  = 1 2, and since we need a notation for mixed

strategies, we let  denote the c.d.f. of the bid submitted by type  . We denote with  the equilibrium

expected utility of type  .

By relying on arguments in Maskin and Riley (1985) and Riley (1989), we deduce that each equilibrium

satisfies the following properties.

1. Type 1 and type 2 both bid  with probability 1 (a pure strategy), that is 1 and 2 both put

probability 1 on the bid . Hence 

1 = 0, 


2 = 0.

2. For each  , the set of possible realizations of  is an interval and we denote with  and ̄

the infimum and the supremum of such interval, respectively. Moreover, 1 = , 1 = ̄1 , and

2 = , 2 = ̄2 . That is, there are no gaps in the distribution of bids by each bidder.

3. Each  is a continuous function, except possibly at  =  when  = . That is, no bidder puts a

probability mass on a single bid, except possibly for the bid .

4. A mixed strategy  is a best response for type  if and only if each bid in the set of the possible

realizations of  maximizes the expected utility of type  ; hence type  needs to be indifferent

among all such bids.

5. The highest bid for type 1 , ̄1 , is equal to the highest bid for type 2 , ̄2 , that is ̄1 = ̄2 . In

the following we use ̄ to denote the common value of ̄1  ̄2 and notice that 

1 = 2 = − ̄

because of remark 4 and since either bidder wins with probability 1 by bidding ̄ .

From remark 3 we deduce that if a bidder bids   , then with probability 1 no tie occurs and we can

evaluate the expected utility of a bidder — say bidder 1 — from a bid    as follows. We define 2 as the

c.d.f. of the bids submitted by bidder 2, that is 2() = 22() + 22 () + 22(). Then if type

 of bidder 1 submits a bid   , his expected utility is ( − )2() because 2() is his probability to

win. Likewise, 1() = 11() + 11 () + 11() is the c.d.f. of the bids submitted by bidder 1,

and for type 2 the expected utility from bidding    is ( − )1().

From remark 4 we deduce that for type 1 the equality ( − )2() = 1 holds for each  ∈
( ̄1 ], that is type 1 is indifferent among all bids in the interval ( ̄1 ]. Moreover, 


1 coincides

with lim↓( − )2(), that is with 2()∆. Since type 2 bids , we know that 2() ≥ 2 but we

cannot rule out that also type 2 bids  with positive probability. Hence it is possible that 2()  2,

and we use 2 to denote 2(); likewise, we set 1 = 1(). Therefore

1 = 2∆ with 2 ≥ 2 and 2 = 1∆ with 1 ≥ 1 (2)

Notice that it cannot happen that both type 1 and type 2 bid  with positive probability, as in such

a case either type would have incentive to increase the own bid slightly above  to increase, by a discrete

amount, his probability to win while increasing his expected payment just infinitesimally. Hence 1 ≥ 1,

2 ≥ 2 but at least one of these weak inequalities holds as equality.
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Applying remark 4 to types 1  1  2  2 we obtain

( − )2() = 2∆ for each  ∈ ( ̄1 ] (3)

( − )2() =  − ̄ for each  ∈ [̄1  ̄ ] (4)

( − )1() = 1∆ for each  ∈ ( ̄2 ] (5)

( − )1() =  − ̄ for each  ∈ [̄2  ̄ ] (6)

Example: The case of binary support As an example, we illustrate here the role played by 1 2 when

for each bidder there are just two possible values,  and  (with  −  = 2∆), with probabilities 1

and 1−1 for bidder 1, 2 and 1−2 for bidder 2 (that is, 1 = 2 = 0) and 1 ≤ 2.
10 If 1 = 2, then we

obtain ̄ =  − 22∆ and 1() = 2() =
−̄
− for each  ∈ [ ̄ ], with 1 = 1 = 2 = 2. When

1  2, we find that ̄ is unchanged because type 1 ’s equilibrium utility is still 22∆, his utility from

bidding . Hence also type 2 ’s equilibrium utility is 22∆, and type 2 needs to earn the same utility

22∆ from any bid in ( ̄ ]. However, if type 1 puts no probability mass on , then 2 ’s utility from

a bid  ∈ ( ̄) tends to 21∆ as  tends to , rather than to 22∆. Hence in equilibrium 1 needs to be

equal to 2, that is 1  1, which requires that type 1 bids  with probability
2−1
1−1  0. As a result,

when 1 smaller than 2 the c.d.f.s 1 2 and the revenue do not depend on 1.

We prove below that in our setting with three possible types for each bidder, sometimes it is bidder 1 who

bids  with probability 1 greater than 1, sometimes it is bidder 2 who bids  with probability 2  2.

3.1.2 The equilibrium strategies

The c.d.f.s 12 are straightforward to derive from (3)-(6) as a function of ̄1  ̄2  ̄  1 2.
11 In order

to determine ̄1  ̄2  ̄  1 2, without loss of generality we assume that (1) holds. This means that

bidder 1 is ex ante weakly stronger than bidder 2 in the sense that 1 − 1 − 1 = Pr{1 = } is no less
than 1− 2 − 2 = Pr{2 = }. But notice that (1) does not imply that the distribution of 1 first order
stochastic dominates the distribution of 2: that requires 1 ≤ 2 in addition to (1) (with at least one strict

inequality). Next lemma shows that (1) implies ̄1 ≤ ̄2 , thus if bidder 1 turns out to have value  ,

then he is less aggressive in terms of the set of possible bid realizations then type 2 , and a similar result

holds if bidder 1 turns out to have value  , relative to type 2 .
12

Lemma 1 If 1 + 1  2 + 2, then  ≤ ̄1  ̄2 ; if 1 + 1 = 2 + 2, then   ̄1 = ̄2 .

Moreover, 1(̄2 ) = 2 + 2.

Lemma 1 follows from the property that types 1 and 2 earn the same expected utility, that is 1 =

2 (see remark 5), and a contradiction is obtained if we suppose that ̄2 ≤ ̄1 .
13 Then (i) by bidding

̄1 , which belongs to the interval [̄2  ̄ ] in (6), type 2 beats types 1 and 1 by definition of ̄1 ,

hence wins with probability 1 + 1; (ii) by bidding ̄1 , which belongs to the interval [̄1  ̄ ] in (4),

type 1 wins with probability at least 2 + 2. Since we are considering the same bid ̄1 , the equality

1 = 2 implies that the probabilities to win with the bid ̄1 are equal for types 1 and 2 , which

10This setting has already been examined in Maskin and Riley (1985), which establish the result about the revenue comparison

mentioned just before Subsection 4.1. Here we use this setting as a sort of benchmark.
11Once 1 is determined, it is possible to derive 1  1 using 1() = 1 + 11 () + 11() for    and the

equalities 1 () = 1 for  ≥ ̄1 , 1() = 0 for   ̄1 . Similarly, from 2 it is possible to derive 2 2 .
12Proposition 2(i-ii) below compares bidding by the types mentioned above in terms of first order stochastic dominance.
13 In order to simplify the argument, we assume here ̄2  . The proof of Lemma 1 covers also the case in which ̄2 = .
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requires ̄1 = ̄2 and that (1) holds with equality — indeed, in such case Lemma 1 establishes ̄1 = ̄2 .

But if (1) holds strictly, then a contradiction emerges; hence ̄1  ̄2 must hold. Moreover, the bid ̄2

yields type 1 a probability to win equal to 2 + 2, hence arguing as above reveals that 2 + 2 is the

probability to win of type 2 by bidding ̄2 , that is 1(̄2 ) = 2 + 2.

In order to fix the ideas, we begin with the case in which   ̄1 . Then by Lemma 1 the bids

̄1  ̄2  ̄ satisfy

  ̄1 ≤ ̄2  ̄ (7)

From (5) evaluated at  = ̄1 and at  = ̄2 we derive ̄1  ̄2 as a function of 1:
14

̄1 =  − 1
1 + 1

∆ ̄2 =  − 1
2 + 2

∆ ̄ =  − 2(1 +
1 + 1

1
)∆ (8)

Then (3) at  = ̄1 yields 2(̄1 ) =
2
1
(1 + 1), which can be used to evaluate (4) at ̄1 and to derive

̄ in (8). Therefore the equilibrium is fully determined if 1 2 are identified. This is achieved by evaluating

(6) at ̄2 , which reduces to

 (1 2) = 0, with  (1 2) = 2(1 +
1 + 1

1
)− 1 − 2 − 2 (9)

In particular (omitting the common factor ∆), 2(1 +
1+1
1

) is type 2 ’s utility from bidding ̄ and

1 + 2 + 2 is 2 ’s utility from ̄2 .
15

The equation  (1 2) = 0 determines 1 2 uniquely as  is strictly decreasing with respect to 1,

strictly increasing with respect to 2, and 1 ≥ 1, 2 ≥ 2 with at least one equality. On this basis

Proposition 1 below identifies, for each given parameter values, a unique equilibrium, which is one of the

following three strategy profiles:

2 :

(
the distributions of bids are given by 12 satisfying (3)-(6), with ̄1  ̄2  ̄

in (8) and 1 = 1, 2 = 1
1+2+2
21+1

is the unique solution to  (1 2) = 0
(10)

1 :

(
the distributions of bids are given by 1 2 satisfying (3)-(6), with ̄1  ̄2  ̄ in (8) and

2 = 2, 1 =
q

1
4
22 + 2(1 + 1)− 1

2
2 is the unique solution to  (1 2) = 0 in [1 1 + 1)

(11)

1 :

(
type 1 bids  (that is, ̄1 = ); the distributions of bids are given by 1 2

satisfying (4)-(6), with ̄2 in (8), ̄ =  − 22∆ and 1 = 2 − 2, 2 = 2
(12)

In each of these profiles, types 1 and 2 both bid . The profiles mainly differ because of the additional

bidder types who bid  with positive probability: in 2 it is only type 2 ; in 1 it is only type 1 ; in

1 , both type 1 (with probability 1) and type 1 bid  with positive probability.

Proposition 1 Suppose that (1) is satisfied. Then the unique equilibrium in the FPA is 2 if  (1 2)  0,

that is if

2(1 + 1)  1(1 + 2) (13)

The unique equilibrium is 1 if  (1 2) ≥ 0   (1 + 1 2), with  (1 + 1 2)  0 if and only if

2 − 2  1 + 1 (14)

14To this purpose we use 1(̄1 ) = 1 + 1 and, from Lemma 1, 1(̄2 ) = 2 + 2.
15Notice that  (1 2) = 0 implies that ̄ in (8) can be written as  − (1 + 2 + 2)∆.
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The unique equilibrium is 1 if  (1 + 1 2) ≥ 0.
By Proposition 1, there exist three different equilibrium regimes, (10)-(12), and the regime which applies is

determined by the parameter values through the sign of  (1 2) and of  (1+1 2).
16 For instance, when

 (1 2)  0 the utility of type 2 from bidding ̄2 is lower than the utility from ̄ , which is inconsistent

with equilibrium. Equality is achieved by increasing 1 above 1, as this increases the probability that

bidder 1 bids less than ̄2 (and in particular the probability that 1 bids ), hence increases 2 ’s utility

from ̄2 , but also increases ̄ , hence decreasing the utility from ̄ .
17 In particular, 1 is determined by

solving  (1 2) = 0 if a solution to this equation exists in the interval (1 1 + 1), and then 1 in (11)

is identified.18 But in some cases  (1 + 1 2) ≥ 0, that is  (1 2) = 0 has no solution smaller than

1 + 1. Then 1 ≥ 1 + 1, that is type 1 bids  with probability 1 and ̄1 = ; this implies that (7)

is violated and the derivation of (9) based on (8) does not apply when 1 ≥ 1 + 1. However, the value

of 1 is still determined by the condition that 2 is indifferent between bidding ̄2 or ̄ , and then 1

in (12) is identified (see the proof of Proposition 1). An important feature of 1 is that bidding is not

affected by 1 1.
19

Figures 1a,1b below provide a graphical illustration of Proposition 1 by fixing 2 2, and representing

the space of (1 1) which satisfy (1), that is the triangle with bold edges and vertices (0 0), (2 + 2 0),

(0 2 + 2); the point (1 1) = (2 2) is on the hypothenuse of this triangle. Figure 1a refers to the case

with 2 ≤ 2, which makes (14) satisfied for each (1 1), whereas Figure 1b refers to the case of 2  2,

which allows for the existence of (1 1) close to (0 0) which violate (14). The equality  (1 2) = 0 is

equivalent to (13) written with equality and it holds when, in Figure 1a, (1 1) is on the curve  connecting

point (0 0) to point (2 2); in Figure 1b,  (1 2) = 0 holds when (1 1) is on the curve  connecting

16Proposition 1 assumes that (1) is satisfied, but it is simple to adapt the analysis to the case in which (1) does not hold.
17This occurs because increasing 1 lowers 2(̄1 ) =

2
1
(1 + 1), which lowers type 1 ’s utility from bidding ̄1 . Since

type 1 must be indifferent between bidding ̄1 and bidding ̄ , it follows that ̄ increases.
18When  (1 2)  0, a similar argument applies to explain why 2  2, based on comparing the utility of type 1 from

bidding ̄1 and the utility from bidding ̄ .
19We remark that 1  1 + 1 means that type 1 bids  with positive probability. This may occur only when 2  2

because 1 ’s utility from bidding  is 22∆, and by bidding  , 1 wins with probability greater than 2 + 2, earning

utility greater than (2+2)∆. Thus 2 ≤ 2 makes the bid  less profitable than the bid  and rules out that 1 bids .
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point (2 − 2 0) to point (2 2):

Figure 1a: The regions 1  2 when 2 ≤ 2 Figure 1b: The regions 1  2  1 when 2  2

Region 2 in either figure is the set of (1 1) for which (13) is satisfied, hence 2 is the equilibrium

when (1 1) ∈ 2 . Region 1 is the region in which the equilibrium is 1 , and 1 is the equilibrium

when (1 1) ∈ 1 (1 is empty in Figure 1a). If (1 1) lies on , then 1 (or equivalently, 2 )

is the equilibrium, with (1 2) = (1 2), that is only types 1 and 2 bid .

After 1 2 ̄ are determined, the rent of each bidder type follows from (3)-(6) and depends on whether

(1 1) belongs to region 2 , or to 1 , or to 1 : see the proof of Proposition 1.

The expected revenue  is the expectation of the highest bid, which is equal to  with probability

12 and has c.d.f. 1()2() for  ∈ ( ̄ ], with 1() and 2() determined by (3)-(6). Hence

 = 12 +

Z ̄



 (1()2())

3.1.3 The effects of asymmetry on bidding in the FPA

In this subsection we describe the effects of the asymmetry in the distributions of values on the equilibrium

bidding in the FPA. In particular, we compare bidding under asymmetry with bidding under symmetry, and

to this purpose we indicate with 
sym
1 the c.d.f. of bids of either bidder in the symmetric setting in which

1 2 are i.i.d. and Pr{1 = } = Pr{2 = } = 1, Pr{1 = } = Pr{2 = } = 1. Likewise, with


sym
2 we denote the c.d.f. of bids of either bidder when 1 2 are i.i.d. and Pr{1 = } = Pr{2 = } = 2,

Pr{1 = } = Pr{2 = } = 2. Proposition 1 reveals that, for  = 1 2,


sym
 () =

(
∆
− for each  ∈ [ ̄ ]

−̄
− for each  ∈ (̄  ̄ ]

with ̄ = − 

 + 
∆, ̄ = −(2+)∆

The following proposition describes how the asymmetry affects bidding in the FPA.

Proposition 2 Suppose that (1) holds strictly. Then

(i) 2 ()  1 () for each  ∈ [ ̄1 ] if and only if (1 1) ∈ 1 ∪1 ;

(ii) 2()  1() for each  ∈ [̄2  ̄);

9



(iii) 1() ≤ 2() for each  ∈ [ ̄ ];
(iv) 1() ≤ 

sym
2 () for each  ∈ [ ̄2 ] if and only if 1 ≤ 2; 

sym
2 ()  1() for each  ∈ [ ̄ ] if

and only if 2  1;

(v) 
sym
1 () ≤ 2() for each  ∈ [ ̄ ];

(vi) 
sym
1 () ≤ 1() for each  ∈ [ ̄ ];

(vii) 2() ≤ 
sym
2 () for each  ∈ [ ̄2 ] if and only if (1 1) ∈ 1 ∪1 ; 

sym
2 () ≤ 2() for each

 ∈ [ ̄ ] if and only if 1 ≥ 2.

A well known result in the literature refers to a setting with two bidders, one of whom is ex ante stronger

and the other is ex ante weaker, in the sense that the c.d.f. for the strong bidder’s value dominates the c.d.f.

for the weak bidder’s value in terms of conditional stochastic dominance.20 That is, the former c.d.f. first

order stochastically dominates the latter c.d.f., conditional on considering values not greater than a given

, for an arbitrary . This condition is proved to imply that the weak bidder bids more aggressively than

the strong bidder, that is for a same value for the object, the weak bidder’s bid is higher than the strong

bidder’s bid.21

Proposition 2(i-ii) proves a similar result after observing that in our setting, given (1), if one bidder

is stronger than the other then it is bidder 1. In particular, Proposition 2(i) shows that given (1) strictly

satisfied, the condition (1 1) ∈ 1∪1 is necessary and sufficient for type 2 to bid more aggressively

than type 1 . When instead (1 1) ∈ 2 , we find that 1 ()  2 () for  close to  because

2  2, hence type 2 bids  with positive probability, unlike type 1 .
22 Proposition 2(ii) shows that

(1) suffices to prove that type 2 bids more aggressively than type 1 — a result analogous to Proposition 1

of Fibich, Gavious, Sela (2002). In order to compare the assumption of Proposition 2(i-ii) with conditional

stochastic dominance, we notice that in our setting the latter dominance holds if and only if the distribution

of 1 first order stochastically dominates the distribution of 2 (that is, if 1 ≤ 2), and moreover

Pr{1 = |1 ≤ }  Pr{2 = |2 ≤ }

which reduces to
1

1 + 1


2

2 + 2
(15)

Given (2 2), a graphical interpretation of (15) is immediate: (15) holds if and only if (1 1) in Figure 1

lies above the segment connecting (0 0) to (2 2). This implies that (1 1) ∈ 1 ∪ 1 ,
23 thus our

Proposition 2(i-ii) relies on a condition weaker than conditional stochastic dominance.

Proposition 2(iii) proves that even though bidder 2 may bid more aggressively than bidder 1, the overall

bid distribution of bidder 1 is stronger than the overall bid distribution of bidder 2. Li and Riley (2007) prove

this result assuming that the c.d.f. for the value of the strong bidder first order stochastically dominates

the c.d.f. for the value of the weak bidder, but we notice that Proposition 2(iii) relies on a condition weaker

than first order stochastic dominance, as 1 ≤ 2 is not needed.

Proposition 2(iv-vii) provides results about how asymmetry affects bidding in the FPA with respect to

a symmetric setting. In particular, the first inequality in Proposition 2(iv) considers a bidder facing a weak

opponent and establishes that a strong bidder bids more aggressively than a weak bidder against a weak

20See Lebrun (1998), Maskin and Riley (2000a), Li and Riley (2007), Kirkegaard (2009). Lebrun (1998) allows for an arbitrary

number of ex ante strong bidders and an arbitrary number of ex ante weak bidders.
21Precisely, the papers mentioned in the previous footnote consider settings with continuously distributed values in which

each bidder type plays a pure strategy.
22But 2 ()  1 () for  close to ̄1 as 1 (̄1 ) = 1 and ̄1  ̄2 
23Hence the equilibrium in the FPA is 1 or 1 .
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opponent; equivalently, a weak bidder faces a more aggressive bid distribution from his opponent if the

latter is strong rather than weak. Proposition 2(v) establishes an analogous property for a bidder facing

a strong opponent. Proposition 2(vi) considers a strong bidder and claims that such a bidder bids more

aggressively when facing a strong rather than a weak opponent. Likewise, the first inequality in Proposition

2(vii) establishes that a weak bidder bids more aggressively when facing a strong opponent rather than a

weak opponent when (1 1) ∈ 1 ∪1 , but not when (1 1) ∈ 2 . In fact, the opposite property

holds if 1 ≥ 2, that is a weak bidder is less aggressive against a strong opponent than against a weak

opponent if 1 ≥ 2.

Maskin and Riley (2000a) assume first order or conditional stochastic dominance to establish the inequal-

ities in Proposition 2(iv-vii) [for Proposition 2(iv), 2(vii) Maskin and Riley (2000a) prove the first inequality

in each statement]. Conversely, Proposition 2(iv-vii) determine a less restrictive necessary and sufficient

condition for either considered property to hold, and in some cases for the reverse property to hold.

3.2 Equilibrium bidding in the second price auction

In the second price auction, SPA henceforth, for each bidder it is weakly dominant to bid the own valuation.

We use  to denote the expected utility of type  , for  = ,  = 1 2. Hence 1 = 2 = 0, that

is, type 1 and type 2 both have utility zero, and

1 = 2∆ 1 = (22 + 2)∆ 2 = 1∆ 2 = (21 + 1)∆ (16)

The seller’s expected revenue  is the expectation of the second highest valuation, that is  =  +

(12 + 12 + 12)∆+ 212∆, and after simple manipulation it can be written as

 =  + ((2− 22 − 2)(1− 1)− (1− 2 − 2)1)∆ (17)

4 Comparison between the FPA and the SPA

In this section we compare the expected revenue in the FPA with the expected revenue in the SPA. To this

purpose, it is useful to define

 = 1

1 + 1


1 + 2


2 + 2


2 and  = 1


1 + 1


1 + 2


2 + 2


2

as the total bidders’ expected utility under the FPA and under the SPA, respectively.

The SPA always allocates the object to a bidder with the highest value, whereas the FPA implements an

inefficient allocation with positive probability when (1) holds strictly because then ̄1  ̄2 and type 2

wins with positive probability when facing type 1 .
24 Therefore social welfare is greater in the SPA than in

the FPA, and if we establish that  ≥  holds then it follows that    .

Example: Revenue ranking for the case of binary support The comparison between  and 

yields an immediate conclusion in the setting with binary support with 1 = 0, 2 = 0 and 1  2. The

equilibrium in the FPA described at the end of Subsection 3.1.1 coincides with 1 in (12) with 1 = 2,

2 = 2. As a result, types 1 2 1 earn the same utility in the FPA as in the SPA, but type 2 ’s utility

is higher in the FPA than in the SPA, 22∆ rather than 21∆. Therefore 
   and    .

In the following we show that the setting with three types leads to significantly different results and we

illustrate the source of the difference.

24Conversely, ̄1 = ̄2 holds when (1) is satisfied with equality, and then the FPA allocates the object efficiently.
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4.1 Comparison of rents

It is immediate from (2) and (16) that both type 1 and 2 weakly prefer the FPA, that is 1 ≥ 1 and

2 ≥ 2 , since 2 ≥ 2 and 1 ≥ 1. This occurs because in the FPA type 1 or type 2 (unless (13) is

an equality) bids  with positive probability, which makes type 2 or type 1 better off than in the SPA.

The same preference holds for type 2 , that is 

2 ≥ 2 , because 


2 is given by type 2 ’s expected

utility from bidding ̄2 , that is ( − ̄2 )1(̄2 ), which reduces to ( − ̄2 +∆)1(̄2 ), and finally

to 2 + (2 + 2)∆ since 1(̄2 ) = 2 + 2 by Lemma 1. Using (2) we see that 

2 + (2 + 2)∆ is

not less than (1 + 2 + 2)∆, which is at least as large as 

2 in (16) because of (1). Basically, in the

FPA type 2 benefits from the fact that ̄1  ̄2 , that is type 1 submits a bid below ̄2 with positive

probability. Hence type 1 loses with positive probability against ̄2 , the highest bid submitted by type

2 , that is when bidding ̄2 , type 2 beats types 1 1 for sure and type 1 with positive probability.

Thus 2 wins with probability greater than 1 + 1. Conversely, under the SPA type 2 wins and earns a

positive utility only when facing type 1 or 1 , that is with probability 1 + 1.

Matters are different for type 1 , because 1 = 2 but 1 = (22 + 2)∆ may be higher than

2 = (21 + 1)∆, and indeed 1  1 in some cases. For instance, this occurs when (1 1) ∈ 2

and 1  2 because we know from above that 1 = 2 = 2 + (2 + 2)∆ = (1 + 2 + 2)∆ (as

1 = 1), hence 

1  1 . Next lemma shows that 


1  1 when 1  2 and (1) is strictly satisfied.

Lemma 2 Types 1  2  2 all weakly prefer the FPA to the SPA. Type 1 prefers the FPA if 1  2;

type 1 is indifferent between the two auctions if 1 = 2, or if 1  2 and (1) holds with equality; type

1 prefers the SPA if 1  2 and (1) holds strictly.

By Lemma 2, only type 1 may prefer the SPA to the FPA, hence it is intuitive that often  ≥  . In

particular, when 1 ≥ 2 each bidder type weakly prefers the FPA to the SPA, hence 
   if 1 ≥ 2.

25

Next proposition provides an alternative sufficient condition for    .

Proposition 3 Given (1) and (1 1) 6= (2 2), either of the following two conditions implies    ,

hence    : (i) 1 ≥ 2; (ii) 1  2 and 1 is large, that is (1) holds with equality or with approximate

equality.

About condition (ii) in Proposition 3, notice that Lemma 2 establishes 1 = 1 when 1  2 and (1)

is satisfied with equality, that is when 1 = 2+2− 1; hence each type weakly prefers the FPA and since

(1 1) ∈ 1 , we have that 1  1, hence type 2 strictly prefers the FPA and    . In the proof

to Proposition 3 we show that    still holds if 1 is slightly reduced below 2 + 2 − 1. The basic

insight is that a reduction in 1 lowers 

2 in (16), and even though it may reduce also 1 and 2 , and

increase the weight 1 of 

1 −1 ≤ 0 in  − , the latter effects are relatively less important than the

reduction in 2 when starting from 1 = 2 + 2 − 1. In particular, Proposition 3(ii) implies 
   if

(1 1) is close to (2 2). Therefore 
   when the asymmetry is small.26

4.2 Comparison of revenues

4.2.1 General comparison

In this subsection we compare  with  directly, without resorting to the comparison of rents. But since

Proposition 3 reveals that    if 1 ≥ 2 and/or if (1) holds with equality, we consider the case in

25Since we are considering (1 1) ∈ 2 , we have that 2  2. Hence type 1 strictly prefers the FPA and    .
26Gavious and Minchuk (2013) prove that no general ranking result holds for small asymmetries around the uniform distrib-

ution. Conversely, in our setting small asymmetries always favor the SPA.
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which 1  2 and (1) holds with strict inequality. This means that the c.d.f. of 1 first order stochastically

dominates the c.d.f. of 2.

We begin by observing that (17) reveals that  is strictly decreasing in 1 and in 1, which is intuitive

as an increase in 1 (in 1) increases the probability that bidder 1 has value  (has value  ) and decreases

the probability 1 = 1−1−1 that bidder 1 has value  . Hence it worsens the bid distribution of bidder

1. Moreover,


1




1
 0 (18)

holds since    . Hence an increase in 1 decreases 
 more than an equal increase in 1.

The expression for  , given in the proof of Proposition 1, depends on whether (1 1) belongs to 1 ,

or to 2 , or to 1 , and is not as simple as (17). Then, instead of trying to determine the precise set

of solutions to the inequality    , for given (2 2) we inquire whether there exist (1 1) such that

   , or if instead  ≤  for each (1 1).

Next proposition provides an answer after distinguishing the case of 2 ≤ 2 from the case of 2  2

because when 2 ≤ 2 there exist two equilibrium regimes, one applying when (1 1) ∈ 1 , the other

when (1 1) ∈ 2 : see Figure 1a. Conversely, when 2  2 there is a third equilibrium regime, which

applies when 1 1 are small, that is when (1 1) ∈ 1 : see Figure 1b.

Proposition 4(i) Suppose that 2 ≤ 2. If (2 + 2)
2 ≤ 2, then 

 ≤  for each (1 1) which satisfies

(1). Conversely, if

(2 + 2)
2 − 2  0 (19)

then    for (1 1) close to (0 0), and there exists 
∗
1 ∈ (0 2) such that (1 1) ∈ C satisfies

   if and only if 1  ∗1.
(ii) Suppose that 2  2. If

32 + 2 − 1− 2
2

2
(2 − 2) ln

µ
2

2 − 2

¶
 0 (20)

then    for (1 1) close to (2 − 2 0), and there exists 
∗
1 ∈ (2 − 2 2) such that (1 1) ∈ C

satisfies    if and only if 1  ∗1. If (20) is violated, then  ≤  for each (1 1) satisfying (1).

(iii) Regardless of whether 2 ≤ 2 or 2  2, the inequality 
 ≤  holds for each (1 1) if 2+2 ≤ 1

2
.

The case of 2 ≤ 2 In the following, for ease of language, instead of (1 1) close to (0 0) we write

(1 1) = (0 0). When 2 ≤ 2, Proposition 4(i) establishes that there exist (1 1) such that 
  

if and only if (19) is satisfied, and in such case    holds for (1 1) = (0 0). In other words, if

 ≤  for (1 1) = (0 0) then  ≤  for each (1 1). In the proof of Proposition 4 we show that

2 ≥ 1
2
makes (19) violated, hence 2 ≥ 1

2
, or equivalently 2 + 2 ≤ 1

2
, implies  ≤  for each (1 1),

as Proposition 4(iii) states. Conversely, (19) may hold when 2 + 2 is greater than
1
2
, and in particular it

holds if, given any 2 
1
4
,27 2 is sufficiently large, given that 2 ≤ 2: see Figure 2 below.

Next property helps to make sense of Proposition 4(i).

C-property If  −   0 for some (1 1) ∈ C, then there exists at least one (1 1) ∈ C such that
 −  0.

27 Since 2 + 2 
1
2
and 2 ≥ 2, it follows that 2 

1
4
.
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The proof of this property exploits the features of 1  2 in (11), (10) to show that starting from any

(01 
0
1) ∈ C, it is possible to find (001  001) ∈ C such that  − is greater when (1 1) = (

00
1  

00
1) than

when (1 1) = (
0
1 

0
1).

The C-property implies that in order to establish the existence of (1 1) such that 
 −   0, we

can focus on (1 1) ∈ C, that is we search for (1 1) ∈ C such that    . Proposition 3 implies

that    if (1 1) ∈ C is close to (2 2), as then    . At the other extreme of C, that is at

(1 1) = (0 0), we find that 
 − is given by the left hand side of (19), which is positive if and only if

2 is sufficiently large, given 2 ≤ 2. We notice that (1 1) = (0 0) induces the most aggressive bidding

by both bidders in the FPA, given 2 ≤ 2, because from (3)-(6) and (8) it follows that 1 2 are most

aggressive the lower are 1 2, and 1 ≥ 1 2 ≥ 2 by (2). When (1 1) = (0 0), we find 1 = 0, 2 = 2,

the lowest possible values for 1 2 given 2 2. But we stress that (1 1) = (0 0) alone is not sufficient

for    to hold: (1 1) = (0 0) induces the most aggressive bidding by bidder 1 also in the SPA,
28

and the sign of  −  when (1 1) = (0 0) is determined by whether (19) is satisfied. We illustrate

below why    holds when (19) holds, based on the resulting bidding in the FPA.

First notice that when 1 1 are about 0, bidder 1 almost certainly has value  and there are three

relevant states of the world: (1 2) equal to (  ), or equal to (   ), or equal to (  ). From (8)

we see that ̄2 is close to  , and (5) implies that 1() is close to 0 for each    , that is in the limit

as (1 1)→ (0 0), 1 places all the probability on bids not smaller than  . In other words, bidder 1 (i.e.,

type 1) bids at least  ;
29 hence the revenue under the FPA is greater than  . Conversely, under the

SPA the revenue coincides with 2 in each of the states mentioned above as min{1 2} = min{  2} = 2.

Hence the revenue is greater in the FPA in the states (1 2) = (  ) and (1 2) = (   ), but it

is greater in the SPA when (1 2) = (  ). This makes it intuitive that 
   if 2 is large: the

greater is 2, the greater is the probability of the state (  ), in which the FPA has a higher revenue,

and the lower is the probability of the state (  ), in which the SPA has a greater revenue. For instance,

   when 2 is close to 1−2 because then (  ), the only state in which the SPA is superior to the
FPA, has probability about zero.30 Conversely, 2 close to zero makes almost irrelevant the state (  )

in which the FPA is superior to the SPA, and the expectation over the two remaining states, (   ) and

(  ), yields 
   because  is about  + (1−2)∆, which coincides with the highest submitted

bid in the FPA, ̄ in (8).31

We have considered above only (1 1) ∈ C close to (2 2) or close to (0 0), neglecting intermediate
(1 1) ∈ C, because we can prove that  ≤  for (1 1) = (0 0) implies  ≤  for each other

(1 1) in . Precisely, (1 1) ∈ C implies 1 = 1
2
21 +

2−2
2

1: see (13). Therefore, for (1 1) ∈ C,
 − can be viewed as a function of 1 alone, which we write as 

−(1), for 1 ∈ [0 2]. In the proof
of Proposition 4 we show that − is a strictly convex function of 1, and we know that −(2) = 0
because 1 = 2 makes 1 2 identically distributed. Hence if 

−(0) ≤ 0 — that is if (19) is violated —
then −(1)  0 for each 1 ∈ (0 2), that is  −  0 for each (1 1) ∈ C. If instead −(0)  0
— that is if (19) holds — then (1 1) = (0 0) maximizes  −  and there exists ∗1 ∈ (0 2) such that
−(1)  0 for 1 ∈ (0 ∗1) but −(1)  0 for 1 ∈ (∗1 2).
28The bidding of bidder 2 in the SPA is not affected by (1 1).
29This is quite intuitive as 1 = 0 implies 2 = 0, which requires that type 2 has no possibility to win the auction with

a bid lower than  . This occurs only if bidder 1 bids at least  with probability 1.
30Notice that 2 close to 1− 2 requires 2 ≥ 1

2
, because if 2 

1
2
then 2 ≤ 2 implies 2 

1
2
and 1− 2 

1
2
. If instead

2 ∈ ( 14  12 ], then 2 is at most equal to 2, and in such case still 
   .

31 In order to justify this claim we rely on footnote 15 to conclude that ̄ in (8) can be written as  − (1 + 2 + 2)∆,

which is equal to  + (1− 2)∆ since 1 = 1 = 0, 2 = 0.
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The case of 2  2 When 2  2, Proposition 4(ii) establishes a result analogous to Proposition 4(i),

that is if    holds for some (1 1), then it holds for (1 1) = (2 − 2 0), or equivalently if

 ≤  at (1 1) = (2 − 2 0), then  ≤  for each (1 1). In a sense, now (1 1) = (2 − 2 0)

plays the role (1 1) = (0 0) plays when 2 ≤ 2. In order to see why, recall from Subsection 3.1.2 that

given 2  2, if (1 1) is close to (0 0) then (14) is violated and  is constant with respect to 1 1,

whereas  in (17) is decreasing in 1 1. Hence (1 1) = (0 0) is the maximum point for  and the

minimum point for  − in 1 , whereas (1 1) = (2−2 0) is the maximum point for  − in

1 by (18). Moreover, (1 1) = (2 − 2 0) is a point of C and the C-property holds for 2  2, that

is if    for some (1 1) ∈ C then there exist (1 1) ∈ C such that    . Finally,  − 

is strictly convex along C, that is the function −(1), defined for 1 ∈ [2 − 2 2], is strictly convex

with respect to 1. Thus if 
−(1)  0 for some 1 ∈ (2−2 2) then 

−(2−2)  0; indeed, (20)

coincides with the condition −(2 − 2)  0.

We remark that (1 1) = (2−2 0) is the distribution of 1 which induces both bidders’ most aggressive
bidding in the FPA, given 2  2, because when (1 1) = (2−2 0) we have 2 = 2 (this is the minimum

value for 2) and 1 = 2 − 2, and for each other (1 1), 1 is greater than 2 − 2. However, 
  

holds at (1 1) = (2 − 2 0) if and only if (20) is satisfied, which is equivalent to 2 + 2  1
2
and 2

sufficiently large, given 2  2. Figure 2 represents in grey the set of (2 2) which satisfy (19) when

2 ≤ 2, or (20) when 2  2.

Figure 2: The set of (2 2) which satisfy (19)

when 2 ≤ 2, or (20) when 2  2

Inequality (20) is violated if 2 + 2 ≤ 1
2
, but if 2 + 2  1

2
then it is satisfied if 2 is sufficiently

large, given 2  2. For instance, if 2 = 1 − 2 and (1 1) = (2 − 2 0),
32 then there are four

relevant states of the world: (1 2) equal to ( ), or equal to (  ), or equal to (  ), or equal to

(   ). In all these states the revenue with the SPA is , except in state (   ) when it is  ; hence

32Notice that 2 = 1 − 2 requires 2  1
2
, since 1

2
≥ 2  2 is inconsistent with 2 = 1 − 2. In case that 2 ∈ ( 14  12 ),

then 2  2 imposes an upper bound on 2, and when 2 is close to the upper bound    holds and we know from the

case of 2 ≤ 2 that 
   when 2 = 2 and (1 1) is close to (0 0) (i.e., close to (2 − 2 0)); hence by continuity

   holds also if 2 is just a bit smaller than 2.
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 =  + (1− 1)2∆. For the FPA, the revenue is  in state ( ), but in the other states mentioned

above type 2 and/or type 1 submits a random bid with support [ +22∆] because (8) reveals that

̄2 = ̄ = +22∆ when 2+2 = 1.
33 Moreover, the c.d.f.s for these bids, 2 and 1 , are convex,

that is their densities are increasing. Hence the average bid of type 2 and of type 1 is no less than the

midpoint of the support, +2∆. Therefore 
 is greater than +(12 + 1− 1)2∆, which is greater

than  identified above. Conversely, if 2 is about zero then (1 1) = (2 − 2 0) is close to (2 2) and

then a result similar to Proposition 3(ii) establishes that    , thus    .34

On the set of (1 1) such that    When (2 2) is in the grey region in Figure 2, the set of

(1 1) such that 
   is non-empty, but as we explained above, a simple analytical characterization

of this set is unavailable because the expression for  in the proof of Proposition 1 is complicated. Figures

3a, 3b below rely on numeric techniques to identify this set when 2 = 04 2 = 05 (Figure 3a), and when

2 = 06 2 = 03 (Figure 3b):

Figure 3a: The set of (1 1) such that

   when 2 = 04 2 = 05

Figure 3b: The set of (1 1) such that

   when 2 = 06 2 = 03

Proposition 5 determines analytically a simple set, a trapezoid, which is included in the set of (1 1)

which satisfy    .

Proposition 5(i) Suppose that 2 ≤ 2 and (19) is satisfied. Let  = (2+2)
2−2  0, and 1 = 1

2
2

(2+2)
2 ,

1 =
1
2
21 +

2−2
2

1, hence (11) ∈ C. The inequality    holds for each (1 1) in the trapezoid

with vertices (0 0) (1 0) (11) (0 1 +1).

(ii) Suppose that 2  2 and (20) is satisfied. Let  = 2 + 32 − 1 − 2(2 − 2)
2
2
ln 2

2−2  0, and

1 = 2 − 2 +
2

2(1+2 ln
2

2−2 )
, 1 =

1
2
21 +

2−2
2

1, hence (11) ∈ C. The inequality   

holds for each (1 1) in the trapezoid with vertices ( 0) (1 0) (11) ( 1 +1 − ), in which  =

max{2 − 2 −1 0}.
33 In order to justify this claim we rely on footnote 15 to conclude that ̄ in (8) can be written as  − (1 + 2 + 2)∆,

which is equal to  + 22∆ since 1 = 1 = 2 − 2 and 2 = 1− 2.
34The result in Proposition 3(ii) does not apply because it assumes that (2 2) is fixed, whereas in the case we are considering

2 is not fixed.
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The difference with the setting with binary support At the beginning of Section 4 we have remarked

that    when the support for each bidder’s value is { }, that is when 1 = 2 = 0, for each

1  2. Conversely, Proposition 4 shows that 
   in some cases when the support is {   }.

In order to explain this difference, start from a symmetric setting with support {   } and 0 

1 = 2  1 = 2.
35 Then consider a reduction in (1 1) along curve C, from (2 2) to (2 − 2 0):

see Figure 1b. This reduces 1 = 1 and leaves 2 unchanged, hence improves bidding in the FPA and

increases  . However, the reduction in (1 1) improves bidding also in the SPA and increases 
 , hence

it is uncertain whether    holds at (1 1) = (2 − 2 0) — this is determined by whether (20) is

satisfied. The main point is that the considered improvement in the distribution of 1 increases both 

and  .

Matters are different when the support is binary because 2 = 0 implies that the set of (1 1) which

satisfy (1) consists entirely of region 1 (regions 1  2 are both empty). Then, when 1 = 2 = 0,

a reduction in 1 below 2 keeps (1 1) in region 1 , in which bidding in the FPA does not depend

on (1 1). Hence 
   for any 1  2 because when the distribution of 1 becomes stronger, 



increases but  remains constant (as type 1 puts a probability mass on the bid  when 1  2). This

feature of the FPA when the support is binary is responsible for the difference between the two settings.

4.2.2 Some specific asymmetries

The results in Subsection 4.2.1 allow to determine the effects of a few particular asymmetries.

First order stochastic dominance, Mean preserving spreads Starting from a symmetric setting with

(1 1 1) = (2 2 2), consider a change in the distribution of 1 which satisfies (1). Then Proposition 3

reveals that    if 1 ≥ 2, or if 1  2 and (1) holds with equality, and these conditions allow to

conclude that    in the following cases:

• (i) (1 1) = (2 2 − ) for some   0 — then (1 1) belongs to the segment connecting (2 0) to

(2 2) in Figure 1;

• (ii) (1 1) = (2 −  2 + ) for some   0 — then (1 1) belongs to the segment connecting

(0 2 + 2) to (2 2) in Figure 1;

• (iii) the distribution of 1 is a mean preserving spread of the distribution of 2, that is 1 = 2 +

2
,

1 = 2−, 1 = 2+

2
for some   0 — then (1 1) belongs to the triangle in Figure 1 with vertices

(2 0), (2 2), (2 + 2 0).
36

Proposition 3 does not cover cases such that 1  2 and (1) holds strictly — then the distribution of

1 first order stochastically dominates the distribution of 2. But the ranking between  and  is not

clear cut, as if for instance 1 = 2 then (1 1 1) = (2 −  2 2 + ) for some   0 and   

for a small  by Proposition 3, but    may hold for a large , for instance if (1 1) = (0 033),

(2 2) = (065 033). The reason is that when (1 1) ∈ 1 , 
 is decreasing and convex in 1, hence as

1 decreases, 
 increases at an increasing rate (i.e., the rate of increase is greater the greater is ), whereas

 is decreasing linearly in 1. As a result, in some cases a large decrease in 1 (i.e., a large ) implies

   .

35We consider 1 = 2  1 = 2 to fix the ideas, but a similar argument would apply if 1 = 2 were greater than 1 = 2.
36More in general,    holds if the distribution of 2 dominates the distribution of 1 in the sense of second order

stochastic dominance. Because of (1), the distribution of 2 cannot be a mean preserving spread of the distribution of 1.
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When 1  2 and 1  2, that is when both the probability of value  and the probability of 

are lower for bidder 1 than the analogous probabilities for bidder 2, Proposition 4 provides some results.

If (2 2) satisfies 2 ≤ 2 and (19), then    holds if (1 1) = (0 0). That is, a strong enough

improvement in the distribution of 1 leads to    . If instead 2  2 and (20) is satisfied, then

   if (1 1) = (2 − 2 0), but not necessarily if (1 1) = (0 0), as reducing 1 below 2 − 2

(when 1 = 0) does not change 
 but increases  .

Maskin and Riley (2000a) consider a few particular classes of asymmetries, one of which is called shift,

another is called stretch. In a setting with continuously distributed values, Maskin and Riley (2000a)

prove that the FPA produces a higher revenue than the SPA for any shift and any stretch, under suitable

assumptions on the initial distribution which is then shifted or stretched [Kirkegaard (2012) proves that

   under slightly relaxed assumptions]

Shift In our context, the shift asymmetry is obtained by assuming that (2 2) is such that 2 + 2 = 1,

that is 2 = 0, and 1 = 0, 1 = 2, 1 = 2. This means that only the values  and  are possible

for bidder 2, whereas only  and  are possible for bidder 1, with Pr{1 = } = Pr{2 = } and
Pr{1 = } = Pr{1 = }. Hence, the distribution for 1 coincides with the distribution for 2 shifted to
the right by ∆. Notice that 2+2 = 1 makes (19) satisfied when 2 ≤ 2, and (20) satisfied when 2  2.

When 2 ≤ 2 — that is when 2 ≤ 1
2
, as 2 + 2 = 1 — we know that    if (1 1) is close to

(0 0). Since 1 = 0, 1 = 2, it follows that 
   if 2 is close to zero, and numerical methods shows

that    if and only if 2  03182. Therefore when 2 ≤ 1
2
, a shift makes  greater than  if and

only if the distribution of 2 is not too weak, because otherwise the distribution of 1 is not strong enough

to imply    .

When 2  2 — that is when 2 
1
2
— the set of (1 1) such that 

   is concentrated around

(2 − 2 0), a point on the horizontal axis in the space (1 1). But the shift implies (1 1) = (0 2),

which lies on the vertical axis, and numerical methods show that it does not belong to the set such that

   .37

Proposition 5 (Shift) Under the shift asymmetry,    if and only if 2  03182.

Stretch In our context, the stretch asymmetry may be represented by assuming that (2 2) is such that

2 + 2 = 1, that is 2 = 0, and 1 = 2, 1 = 2, 1 = 1 −  for some  ∈ (0 1). Therefore only
the values  and  are possible for bidder 2, whereas for bidder 1,     are all possible, but the

probabilities of ,  are a fraction of the probabilities of   for bidder 2 — the rest of the probability

is allocated to  . As  varies in (0 1), (1 1) moves along the segment connecting (0 0) to (2 2).

When 2 ≤ 2, if  is close to 0 then it is immediate that (1 1) is close to (0 0) and    . But

as  increases, 1 1 increase and become close to 2 2, which implies 
   .38 This suggests that

   if and only if  is sufficiently close to zero, and indeed next proposition establishes that there

exists ∗ ∈ (0 1) such that    if and only if   ∗.
When 2  2, the set of (1 1) such that 

   consists of points near (2 − 2 0), and it is not

immediate whether this set includes points on the segment connecting (0 0) to (2 2). Next proposition

37Doni and Menicucci (2013) consider the same type of shift and use the inequality  ≥  as a sufficient condition for

   . In our context,  ≥  holds if and only if 2 ≥ 2
5
, hence    when 2 ≥ 2

5
. Our Proposition 5 determines

the precise set of 2 such that 
   , that is the interval (03182 1).

38This may look as a consequence of Proposition 3, but in fact Proposition 3 is proved under the assumption that 2+2  1

which is violated here. However, in the proof of Proposition 6 we show that    when  is close to 1.
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establishes that actually the intersection between the set and the segment is non-empty, but becomes tiny

when 2 is large.

Proposition 6 (Stretch) Under the stretch asymmetry,

(a) if 2 ≤ 2, then there exists 
∗ ∈ (0 1) such that    if and only if  ∈ (0 ∗);

(b) if 2  2, then there exists 
∗ ∗∗ in (0 1) such that ∗  2 − 2  ∗∗ and    if and only if

 ∈ (∗ ∗∗),39 but the interval (∗ ∗∗) has vanishing width (i.e., ∗∗ − ∗ → 0), when 2 tends to 1.

We remark that Propositions 5 and 6 provide a significantly more nuanced picture with respect to the

results in Maskin and Riley (2000a) and Kirkegaard (2012), as    emerges in a variety of cases.

5 Conclusions

In this paper we have determined the closed form of the unique equilibrium in the FPA for a two-bidder

setting with asymmetric value distributions. Although our analysis is limited in terms of the set of possible

valuations for each bidder, our results do not need restrictions on the distributions over the given set and

allow a careful comparison between the FPA and the SPA in terms of revenue and in terms of the effects of

an ex ante change in one (or both) value distribution on the resulting equilibrium bidding in FPA.

Arozamena and Cantillon (2004) consider a procurement setting in which the type of each bidder coincides

with the bidder’s cost to produce the object the auctioneer is interested in, and suppose a bidder may make an

observable investment, before he learns the own type and before the auction takes place, which improves the

own ex ante cost distribution. Arozamena and Cantillon (2004) inquire how the bidder’s incentive to invest

depends on whether the auction is a FPA or a SPA, assuming that only one bidder can make the investment

and imposing some restrictions on the effect of the investment on the cost distribution. Our Proposition 1

can be readily adapted to a procurement setting in which the production cost for each bidder belongs to

a set {   } and the cost distributions are asymmetric. Hence it is possible to examine the question
addressed by Arozamena and Cantillon (2004) without restrictions on the post-investment distribution, and

to study more general investment games in which both bidders can invest, possibly starting from asymmetric

situations in order to find out whether an initially advantaged bidder has a greater or smaller incentive to

invest than a disadvantaged bidder, while comparing the FPA with the SPA.
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6 Appendix

6.1 Proof of Lemma 1

Proof First notice that 1 and 2 are both equal to  − ̄ , hence

1 = 2 (21)

The proof that 1+1  2+2 implies ̄1  ̄2 and the proof that 1+1 = 2+2 implies ̄1 = ̄2

relies several times on contradiction arguments which lead to violating (21).

Part 1: Proof that 1+1  2+2 implies ̄1  ̄2 We suppose that 1+1  2+2 and ̄1 ≥ ̄2 ,

and show that these inequalities imply that (21) is violated. We distinguish the case of ̄2   from the

case of ̄2 = . In order to deal with the second case, we first prove that ̄1  .

Step 1.1: Proof that (21) is violated when b̄2  v Consider type 1 and notice that by bidding

̄2 , he wins with probability 2 + 2;
40 hence obtains expected utility ( − ̄2 )(2 + 2) and 1 ≥

(− ̄2 )(2+2). Now consider type 2 and notice that ̄2 is a bid in the support of his mixed strategy,

hence it yields type 2 his equilibrium expected utility 

2 . By bidding ̄2 , type 2 wins with probability

no more than 1 + 1;
41 hence 2 ≤ ( − ̄2 )(1 + 1). Summarizing, 


1 ≥ ( − ̄2 )(2 + 2) 

( − ̄2 )(1 + 1) ≥ 2 , violating (21).

Step 1.2: Proof that b̄1  v The proof is by contradiction. If ̄1 = , then ̄1 ≥ ̄2 implies

̄2 =  and types 1 , 2 both bid  with probability 1. In case that bidder 1 has value  and bidder

2 has value  , the tie-breking rule makes either bidder win with probability
1
2
, paying  . But for type

1 (for instance) it is profitable to increase his bid from  to  +  with a small   0, as then against

2 his probability to win increases from 1
2
to 1, and he pays  +  when he wins rather than  ; against

types 2 2 , his probability to win weakly increases, and his payment upon winning increases by . Hence

his probability to win increases at least by 1
2
2, thus his expected utility increases at least by

1
2
2 − ,

which is positive if  is small enough.

Step 1.3: Proof that (21) is violated when b̄2 = v Consider type 1 and notice that by bidding

+ for a small   0, he wins with probability greater than 2+2;
42 hence 1  (2∆−)(2+2) and

1 ≥ 2∆(2 +2) since  can be any number close to 0. Now consider type 2 and notice that by bidding

 +  for a small   0, he wins with probability less than 1 + 1.
43 Moreover,  +  is a bid in the

support [ ̄ ] of the mixed strategy of type 2 because   ̄1  ̄ ; hence 

2  (2∆−)(1+1) 

2∆(1 + 1). It follows that 

1  2 , which violates (21).

Part 2: Proof that 2 + 2 = 1 + 1 implies ̄1 = ̄2 We suppose that 2 + 2 = 1 + 1 and

̄1  ̄2 (or, similarly, ̄1  ̄2 ), and show that these inequalities imply that (21) is violated. We

distinguish the case of ̄2   from the case of ̄2 = .

Step 2.1: Proof that (21) is violated when b̄2  v Since ̄2  , by bidding ̄2 type 1 wins

with probability 2 + 2; hence 

1 ≥ ( − ̄2 )(2 + 2). Conversely, by bidding ̄2 type 2 wins with

40The winning probability is 2 + 2 because the bid ̄2 beats types 2 2 with probability 1 but is defeated by type 2

(recall that no bidder type puts a probability mass at any bid greater than ).
41The winning probability is no more than 1 +1 because the bid ̄2 is not larger than ̄1 , hence at most it beats types

1 1 with probability 1, but is defeated by type 1 .
42The winning probability is greater than 2 + 2 because the bid  +  beats types 2 2 with probability 1, and type

2 with positive probability as 2 = .
43The winning probability is less than 1+1 because +   ̄1 implies that the bid +  does not beat type 1 with

probability 1.
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probability smaller than 1+1; hence 

2  ( − ̄2 )(1+1). Therefore 


1 ≥ (− ̄2 )(2+2) =

( − ̄2 )(1 + 1)  2 , contradicting (21).

Step 2.2: Proof that (21) is violated when ̄2 =  Consider type 1 and notice that by bidding

 +  for a small   0, he wins with probability greater than 2 + 2; hence 

1  (2∆− )(2 + 2) and

1 ≥ 2∆(2+2). Now consider type 2 and notice that by bidding +  for a small   0, he wins with

probability less than 1 + 1 as ̄1   + ; hence 2  (2∆− )(1 + 1)  2∆(1 + 1). Again, (21)

is contradicted.

Proof of 1(̄2 ) = 2+2 For type 1 , the bid ̄2 yields expected utility 1 since ̄2 ∈ [̄1  ̄ ],

hence 1 = ( − ̄2 )(2 + 2) as ̄2 beats types 2 2 but not 2 . For type 2 , the bid ̄2 yields

expected utility 2 since ̄2 ∈ [̄2  ̄ ], hence 

2 = ( − ̄2 ), where  is bidder 2’s probability to

win by bidding ̄2 .
44 From 1 = 2 we obtain ( − ̄2 )(2 + 2) = ( − ̄2 ), hence  = 2 + 2.

6.2 Proof of Proposition 1

In order to derive (9), notice that: (i) as ̄1 ∈ ( ̄1 ], (3) implies 1
1+1

2(̄1 ) = 2; (ii) as ̄1 ∈
[̄1  ̄ ], (4) implies (1 +

1
1+1

)2(̄1 ) = 1 + 2 + 2. Joining (i) and (ii) reveals that  (1 2) = 0 in

(9) needs to hold.

Case of  (1 2)  0 When  (1 2)  0, equality (9) is satisfied by 1 = 1 and 2 equal to the

unique solution to  (1 2) = 0, that is 2 = 1
1+2+2
21+1

, which belongs to (2 2 + 2) and through (8)

it determines ̄1 , ̄2 , ̄ . Using the expression of 
 at the end of Subsection 3.1.2 yields


2 = 12 +

Z ̄



 (1()2()) = ̄ −
Z ̄



1()2()

and 1 2 are obtained from (3)-(6) to obtain45

1() =

(
1∆

− for each  ∈ ( ̄2 ]
−̄
− for each  ∈ [̄2  ̄ ]

2() =

(
2∆

− for each  ∈ ( ̄1 ]
−̄
− for each  ∈ [̄1  ̄ ]

(22)

Hence


2 = ̄ −

Z ̄1



12∆
2

( − )2
−

Z ̄2

̄1

1∆( − ̄)

( − )( − )
−

Z ̄

̄2

( − ̄)
2

( − )2


= ̄ − 12
̄1 − 

 − ̄1
∆− 1( − ̄) ln

µ
( − ̄2 )( − ̄1 )

( − ̄2 )( − ̄1 )

¶
− ( − ̄)(̄ − ̄2 )

 − ̄2

=  +

µ
2− 21 − (2− 2 − 2) (1 + 2 + 2)− 1(1 + 2 + 2) ln

µ
2 + 2 + 1

21 + 1

¶¶
∆ (23)

44Since ̄1 ≤ ̄2 , it follows that  is at least 1 + 1.
45When (1 1) ∈ 2 , no profitable deviation exists for any bidder type. Precisely, for type 1 the equilibrium utility is 0,

and his utility is still 0 if he bids less than , whereas it is negative if he bids more than . For type 1 , a bid  ∈ [̄1  ̄ ]

yields utility ( − )2() = ( − −∆)2() = 1 −∆2(), in which the second equality follows from (4). At  = ̄1 ,

1 − ∆2() coincides with 1 because of (3), and for  ∈ (̄1  ̄ ], 

1 − ∆2() decreases, hence it is smaller than

1 . For type 1 , a bid  ∈ [ ̄1 ] yields utility ( − )2() = ( − +∆)2() = 1 +∆2(), in which the second

equality follows from (3). At  = ̄1 , 

1 +∆2() coincides with 1 because of (4), and for  ∈ [ ̄1 ), 1 +∆2()

increases, hence it is smaller than 
1 . Similar arguments apply to types 2 2  2 , and when (1 1) ∈ 1 ∪1 .
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Case of  (1 2) ≥ 0   (1+1 2) In this case, (9) is satisfied by 2 = 2 and 1 equal to the unique

solution to  (1 2) = 0, that is 1 =
q

1
4
22 + 2(1 + 1) − 1

2
2, which belongs to [1 1 + 1),

46 and

through (8) it determines ̄1 , ̄2 , ̄ . Hence the expected revenue is


1 = 12 +

Z ̄



 (1()2()) = ̄ −
Z ̄



1()2()

= ̄ −
Z ̄1



12∆
2

( − )2
−

Z ̄2

̄1

1( − ̄)

( − )( − )
∆−

Z ̄

̄2

( − ̄)
2

( − )2


= ̄ − 12(̄1 − )∆

 − ̄1
− 1( − ̄) ln

µ
( − ̄2 )( − ̄1 )

( − ̄2 )( − ̄1 )

¶
− ( − ̄)(̄ − ̄2 )

 − ̄2
(24)

Case of  (1 + 1 2) ≥ 0 In this case, no 1  1 + 1 satisfies  (1 2) = 0. Therefore 1 ≥ 1 + 1,

that is type 1 bids  with probability 1 — hence ̄1 =  — and if 1  1 + 1 then also type 1 bids

 with positive probability. The utility of type 1 from bidding  is 22∆, hence ̄ =  − 22∆, and
also the equilibrium utility of type 2 is 22∆. It is still the case that ̄2 is given by (8), and type 2 ’s

utility from bidding ̄2 is 1 + 2 + 2. Hence 22∆ needs to be equal to 1 + 2 + 2 and it follows that

1 = 2 − 2, which is indeed greater than 1 + 1.

The expected revenue has the same expression as (24), but ̄1 is replaced by :


1 = ̄ − 1( − ̄) ln

µ
 − ̄2

2( − ̄2 )

¶
− ( − ̄)(̄ − ̄2 )

 − ̄2

=  +

µ
2− 22(2− 2 − 2)− 2(2 − 2)2 ln

µ
2

2 − 2

¶¶
∆ (25)

Bidders’ rents The bidders’ rents are given in the following table, in which the common factor ∆ is

omitted. For 1 , 1 is given by the expression in (11):

equilibrium \ bidder type 1 1 2 2

2 1
1+2+2
21+1

1 + 2 + 2 1 1 + 2 + 2

1 2 1 + 2 + 2 1 1 + 2 + 2

1 2 22 2 − 2 22

(26)

6.3 Proof of Proposition 2

(i) When (1 1) ∈ 1 , we have that 1 () = 1, hence the inequality in (i) is satisfied. When

(1 1) ∈ 1 ∪2 , we have that 1 () = 1
1

³
1∆

− − 1

´
, 2 () =

1
2

³
2∆

− − 2

´
and 2 () 

1 () reduces to (12−21)( − )  (21−12)∆. If 12−21  0, then the inequality is more
restrictive when  is close to , hence it holds if and only if 1(2 − 2) ≤ 2(1 − 1), which is satisfied

if (1 1) ∈ 1 as 1 ≥ 1, 2 = 2, but is violated if (1 1) ∈ 2 as 1 = 1, 2  2. If instead

12−21 ≤ 0, then the inequality is more restrictive at  = ̄1 , but it is definitely satisfied at  = ̄1 as

it is equivalent to 2 (̄1 )  1 (̄1 ), and 2 (̄1 )  1 as ̄1  ̄2 by Lemma 1, 1 (̄1 ) = 1.

(ii) We have that 1() =
1()−1−1
1−1−1 , 2() =

2()−2−2
1−2−2 . Since 1() = 2() for each  ∈

[̄2  ̄), it follows that the strict version of (1) implies 2()  1() for each  ∈ [̄2  ̄).

46Precisely, 1 = 1 when  (1 2) = 0, 1 belongs to (1 1 + 1) if  (1 2)  0.
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(iii) When (1 1) ∈ 1 , the inequality 1() ≤ 2() for  ∈ [ ̄2 ] reduces to 2−2
− ≤

22
− , or

to (2 − 2)∆ ≤ (2 + 2)( − ), and at  = ̄2 this inequality holds with equality. For  ∈ [̄2  ̄ ],

the inequality 1() ≤ 2() holds with equality.

When (1 1) ∈ 1 ∪ 2 , the inequality 1() ≤ 2() for  ∈ [ ̄1 ] is 1
− ≤

2
− , which

holds since 1 ≤ 2 for each (1 1) ∈ 1 ∪ 2 . For  ∈ [̄1  ̄2 ], the inequality 1() ≤ 2() is
1

− ≤
1+2+2
− , or 1∆ ≤ (2 + 2)( − ), and at  = ̄2 this holds with equality. For  ∈ [̄2  ̄ ],

1() ≤ 2() holds with equality.

(iv) We prove that 1() ≤ 
sym
2 () when 1 ≤ 2. Then 1 ≤ 2 and ̄2 ≤ ̄2 , ̄2 ≤ ̄ . For

 ∈ [ ̄2 ], the inequality 1() ≤ 
sym
2 () is

1
− ≤

2
− , which holds as 1 ≤ 2. For  ∈ [̄2  ̄2 ],

the inequality 1() ≤ 
sym
2 () is

1
−∆ ≤

−̄2
− , or 1∆ ≤ (22 + 2 − 1)( − ), and at  = ̄2

it reduces to 1 ≤ (22 + 2 − 1)
1

2+2
, which is satisfied as 1 ≤ 2. For  ∈ [̄2  ̄2 ], the inequality

1() ≤ 
sym
2 () is −̄

− ≤
−̄2
− , which holds since ̄2 ≤ ̄ .

47

Now we show that 
sym
2 () ≤ 1() when 1  2. Then (1 1) ∈ 2 and 1 = 1  2, ̄2  ̄2 ,

̄  ̄2 . For  ∈ [ ̄2 ], the inequality 
sym
2 () ≤ 1() is

2
− ≤

1
− , which holds as 1  2. For

 ∈ [̄2  ̄2 ], the inequality 
sym
2 () ≤ 1() reduces to

2
− ≤

1+2+2
− , or to 2∆ ≤ (1+2)( −),

and at  = ̄2 it holds as 1  2. For  ∈ [̄2  ̄ ], the inequality 
sym
2 () ≤ 1() is

−̄2
− ≤

−̄
− ,

which holds since ̄ ≤ ̄2 .
48

(v) First notice that ̄1 ≤ ̄1 and ̄  ̄1 because 1 ≥ 1.

When (1 1) ∈ 1 , the inequality 
sym
1 () ≤ 2() for  ∈ [ ̄1 ] reduces to 1

− ≤
1+2+2
− ,

or to 1∆ ≤ (1+2+2−1)(−), and at  = ̄1 this boils down to 1+1 ≤ 1+2+2−1, which
holds because of (1) and 1 ≥ 1. For  ∈ [̄1  ̄ ], the inequality 

sym
1 () ≤ 2() is

−̄1
− ≤

−̄
− ,

which holds since ̄  ̄1 .
49

When (1 1) ∈ 1 ∪ 2 , for  ∈ [ ̄1 ] the inequality 
sym
1 () ≤ 2() is

1
− ≤

2
− , which

holds as 2 ≥ 1. For  ∈ [̄1  ̄1 ], the inequality 
sym
1 () ≤ 2() is proved as above for the case

of  ∈ [ ̄1 ]. For  ∈ [̄1  ̄ ], the inequality 
sym
1 () ≤ 2() is proved as above for the case of

 ∈ [̄1  ̄ ].

(vi). First notice that ̄ ≤ ̄1 since 1 ≥ 1, but either ̄2  ̄1 or ̄1  ̄2 may hold. For

 ∈ [min{̄2  ̄1}], the inequality 
sym
1 () ≤ 1() reduces to

1
− ≤

1
− , which is satisfied since

1 ≥ 1. If ̄2  ̄1 , then for  ∈ [̄2  ̄1 ] the inequality 
sym
1 () ≤ 1() reduces to

1
− ≤

1+2+2
− ,

or to 1∆ ≤ (1 + 2 + 2 − 1)( − ), and at  = ̄1 this holds because of (1) and 1 ≥ 1. If

̄1  ̄2 , then for  ∈ [̄1  ̄2 ] the inequality 
sym
1 () ≤ 1() reduces to

−̄1
− ≤ 1∆

− , or to
(21 + 1 − 1)( − ) ≤ 1∆. In case that 21 + 1 − 1 ≥ 0, the inequality holds at  = ̄1 since

1 ≥ 1. In case that 21+1−1  0, the inequality holds because the left hand side is negative, the right

hand side is positive.

(vii) When (1 1) ∈ 1 , we have that ̄1 =  ≤ ̄2 = − 2
2+2

∆  ̄2 = −(22+2)∆ ≤
̄ =  − 22∆. For  ∈ [ ̄2 ], the inequality 2() ≤ 

sym
2 () reduces to 22

− ≤
2

− , or to
 −  ≤ ∆, which holds with equality at  = . For  ∈ [̄2  ̄2 ], the inequality 2() ≤ 

sym
2 () is

−̄
− ≤

−̄2
− , which holds as ̄2 ≤ ̄ .

When (1 1) ∈ 1 , we have that ̄1 =  − 1
1+1

∆ ≤ ̄2 =  − 2
2+2

∆ holds since it is

47 In fact, for some parameters the inequality ̄2  ̄ holds, but then 1() ≤ 

2 () still holds for each  ∈ [ ̄2 ].

48 In fact, for some parameters the inequality ̄  ̄2 holds, but then 

2 () ≤ 1() still holds for each  ∈ [ ̄2 ].

49For some parameters the inequality ̄  ̄1 holds, but then 

1 () ≤ 2() still holds for each  ∈ [ ̄ ].
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equivalent to 2(1 + 1) ≤ 1(2 + 2), or to 2(1 + 1) +
1
2
2(2 + 2) ≤ (2 + 2)

q
1
4
22 + 2(1 + 1),

which is equivalent to (1). Moreover, ̄2 =  − (22 + 2)∆ ≤ ̄ =  − (1 + 2 + 2)∆ holds

since 1 ≤ 2. For  ∈ [ ̄1 ], the inequality 2() ≤ 
sym
2 () reduces to

2
− ≤

2
− , which holds

since 2 = 2 in region 1 . For  ∈ [̄1  ̄2 ], the inequality 2() ≤ 
sym
2 () is −̄

− ≤
2∆
− , or

(1 + 2)( − ) ≤ 2∆, and at  = ̄1 it holds with equality since 1 =
q

1
4
22 + 2(1 + 1)− 1

2
2. For

 ∈ [̄2  ̄2 ], the inequality 2() ≤ 
sym
2 () is −̄

− ≤
−̄2
− , which is satisfied since ̄2 ≤ ̄ .

Now suppose that 1 ≥ 2, hence (1 1) ∈ 2 and ̄1 =  − 1
1+1

∆ ≤ ̄2 =  − 2
2+2

∆ since

(1 1) ∈ 2 .
50 Moreover, ̄ =  − (1 + 2 + 2)∆  ̄2 =  − (22 + 2)∆ since 1 ≥ 2. For

 ∈ [ ̄1 ], the inequalitysym2 () ≤ 2() is
2

− ≤
2

− , which holds since 2 ≥ 2. For  ∈ [̄1  ̄2 ],

the inequality 
sym
2 () ≤ 2() reduces to

2∆
− ≤

−̄
− , or to 2∆ ≤ (1 + 2)( − ), and at  = ̄2

it holds since 1 ≥ 2. For  ∈ [̄2  ̄ ], the inequality 
sym
2 () ≤ 2() is

−̄2
− ≤ −̄

− , which is
satisfied since ̄ ≤ ̄2 .

6.4 Proof of Lemma 2

The proofs of 1 ≥ 1 , 

2 ≥ 2 , 


2 ≥ 2 are in the text, in the first two paragraphs of Subsection

4.1.

For the comparison between 1 = (22 + 2)∆ and 1 , consider first (1 1) ∈ 2 . Then 1 =

(1 + 2 + 2)∆, hence 

1  1 if and only if 1  2. When (1 1) ∈ 1 , we have that 1  2 and

1 = (2+
1
2
2+

q
1
4
22 + 2(1 + 1))∆, which is smaller than 


1 (equal to 1) if (1) holds strictly (if

(1) holds with equality). Finally, 1 = 22∆ when (1 1) ∈ 1 ; hence it is immediate that 

1  1 .

6.5 Proof of Proposition 3

6.5.1 Proof of part (i)

The proof that 1 ≥ 2 implies 
   is in the text, just before Proposition 3.

6.5.2 Proof of part (ii)

Given a small   0, let 
1 consist of (1 1) ∈ 1 such that 1 ≥ 2+2−1− , and let 

2 consist

of (1 1) ∈ 2 such that 1 ≥ 2 − . We now prove that    if (1 1) ∈ 
1 ∪

2 .

We recall from Lemma 2 that 1 ≥ 1 , 

2 ≥ 2 , hence

 −  ≥ 1(

1 − 1) + 2(


2 − 2) (27)

and we focus on the right hand side of (27), that is on the comparison between 1 and 1 and between

2 and 

2 ; recall that 


1 −1 ≤ 0 and 2 −2  0 when 1  2. We define 


 = 1


1 +2


2 ,


 = 1


1 + 2


2 . Hence the right hand side in (27) is equal to 


 − 

 and we prove    by

showing 
  

 .

Step 1    if (1 1) ∈ 
1 with  close to zero.

Proof of Step 1 Consider (1 1) such that 1  2 and 1+1 = 2+2; thus (1 1) ∈ 1 , 1 = 2 and

from (26) and (16) it follows that 
 −

 = (1− 2 − 2) (2 − 1)  0. We use  =
q

1
4
22 + 2(1 + 1)

to write
(

−
)

1
as (−1)(2 + 1

2
2 +  − 22 − 2) + (1 − 1 − 1)

2
2
+ (1 − 2 − 2)(

2
2
− 1), which at

50For some parameters the inequality ̄  ̄2 holds, but then 

2 () ≤ 2() still holds for each  ∈ [ ̄ ].
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1 = 2 + 2 − 1 reduces to −2 1−2−222+2
 0 since  = 2 +

1
2
2. Moreover, by continuity the derivative

is still negative if 1 is slightly smaller than 2 + 2 − 1, that is if (1 1) ∈ 
1 with  is close to zero.

Therefore a small reduction in 1 below 2 + 2 − 1 increases 

 − 

 , which is already positive when

1 = 2 + 2 − 1. Hence there exists a small   0 such that 

 − 

  0 for each (1 1) ∈ 
1 .

Step 2    if (1 1) ∈ 
2 with  close to zero.

Proof of Step 2 We consider (1 1) ∈ 
2 with 1 ≤ 2 because of part (i). Then 

 − 
 =

(1− 1 − 1)(1 − 2) + (1− 2 − 2)(2 + 2 − 1 − 1), which is strictly increasing in 1 because of (1)

and 1  2. Therefore in order to minimize 

 − 

 , given 1 ∈ [2 −  2), we pick the smallest 1

such that (1 1) ∈ 
2 ; this identifies a point on curve C which satisfies equation 1 =

1
2
21 +

2−2
2

1

(from (13)) and 1 ∈ [1 2], where 1 = 1
2
2 − 1

2
2 +

1
2

q
(2 + 2)

2 − 42 is the unique 1 such that
1
2
21 +

2−2
2

1 = 2 − . Given 1 =
1
2
21 +

2−2
2

1, we obtain


 − 

 =
2 − 1

2

³
21 + (1− 2)1 + 2 − (2 + 2)

2
´

(28)

for 1 ∈ [1 2], and 21+(1− 2)1+2−(2 + 2)
2
is increasing in 1, with value (1−2−2)(2+2)  0

at 1 = 2. By continuity, it has positive value at 1 = 1 if  is close to zero. Hence 

 −

  0 for each

(1 1) ∈ 
2 . ¥

6.6 Proof of the C-property

First we describe how  depends on 1 1. The first step is to recall that 
 is the expectation of the

highest submitted bid, with 1 the c.d.f. of bidder 1’s bid, 2 the c.d.f. of bidder 2’s bid. Then from

(10)-(12) we obtain next lemma.

Lemma 3(i) When (1 1) ∈ 1 , 
 depends on 1 1 only through 1+1, and an increase in 1+1

reduces  .

(ii) When (1 1) ∈ 2 , an increase in 1 reduces 
 , an increase in 1 increases 

 .

(iii) When (1 1) ∈ 1 , 
 is constant with respect to (1 1).

When (1 1) ∈ 1 , the equilibrium in the FPA is 1 in (12) with 1 = 2 − 2, 2 = 2.

Hence 1 2 do not depend on 1 1 and this makes 
 constant with respect to (1 1). This feature of

1 is analogous to a feature of the equilibrium in the setting with binary support described at the end

of Subsection 3.1.1 when 1  2.

When (1 1) ∈ 1 , Lemma 3(i) relies on (8) and (11) which reveal that 1 1 affect 1 2 only

through 1+1, and an increase in 1+1 increases the probability 1 that bidder 1 bids . This worsens

the entire bid distribution of bidder 1 in the sense of first order stochastic dominance. In particular, an

increase in 1 lowers ̄ from (8), and this worsens also the bid distribution of bidder 2. Thus an increase

in 1 + 1 worsens 1 and 2 and reduces 
 . When (1 1) ∈ 2 , a similar mechanism applies if 1

increases because 2 in (10) is strictly increasing in 1. Conversely, 2 is strictly decreasing in 1, that is an

increase in 1 reduces 2. This does not affect 1, but improves 2 and hence increases 
 . Here a higher

1 reduces 2 and thus reduces the utility of type 1 in (2), which requires more aggressive bidding by type

2 as determined by a reduction in 2() for  ∈ [ ̄1 ]; moreover, ̄1 increases as 1 increases.

Proof of the -property Suppose that (1 1) ∈ 2 . Then  − is increasing in 1 by Lemma

3(ii) and (18). Hence if  −   0 for some (01 
0
1) ∈ 2 , then there exists 

00
1  01 such that

(01 
00
1) ∈ C and  −   0.51 When instead (1 1) ∈ 1 , if 

 −   0 for some (01 
0
1) ∈ 1

51Recall that 01 ≤ 2, as we explained at the beginning of Subsection 4.2.1.
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then consider (001  
00
1) ∈ C such that 01+01 = 001 +001 with 

00
1  01. It follows that 

 has the same value

when (1 1) = (
0
1 

0
1) as when (1 1) = (

00
1  

00
1) because 

 depends on (1 1) only through 1 + 1

by Lemma 3(i), but  is smaller when (1 1) = (001  
00
1) because of (18) and 001 − 01 = 01 − 001  0.

Therefore  − is greater, hence positive, when (1 1) = (
00
1  

00
1). ¥

6.7 Proof of Proposition 4

By the virtue of the C-property, if there exists (1 1) ∈ C such that    , then there exists at least

one (1 1) ∈ C such that    . Thus we restrict to C and consider the function − , defined for
1 ∈ [max{0 2 − 2} 2]. In order to derive the expression of − , we notice that subtracting  from


2 in (23) we obtain (omitting the factor ∆) 

2− = 1−12−21−2+22+22−11 1+2+221+1
−

12 + 222 − 1(1 + 2 + 2) ln
³
2+2+1
21+1

´
.

Evaluating 
2 − at 1 =

1
2
21 +

2−2
2

1 yields 
−(1) =

1−22−2
2

21 +
2−2+22−22−22

2
1 +

(2 + 2)
2 − 2 − 1(1 + 2 + 2) (ln2 − ln1), hence −

1
= 2

1−22−2
2

1 +
2−2+22−22−22

2
−

1 ln2 + 1 ln1 − (1 + 2 + 2) (ln2 − ln1 − 1), 2−

21
= 2 ln1 − 2 ln2 + 2+2

1
+ 2

1−2
2
− 1,

3−

31
= 1

21
(21 − 2 − 2).

When 2 ≤ 32, we have that 
◦
1 =

1
2
(2+2) and 00(

◦
1) =

1
2

³
22 ln

2+2
22

+ 2 + 2 − 22
´
, which is

strictly decreasing in 2, and at 2 = 2 we find 00(
◦
1) =

1
2
(2− 2)  0

From 3−

31
we see that 1 = max{2 − 2

1
2
(2 + 2)} is the unique minimum point for 2−

21

and now we show that
2−(1 )

21
 0. In case that 1 = 1

2
(2 + 2), we find that

2−(1 )
21

=

1
2

³
22 ln

2+2
22

+ 2 + 2 − 22
´
, which is strictly decreasing in 2. Since 2 ≤ min{2 1− 2}, we notice

that
2−(1 )

21
= 2−2

2
 0 when 2 = 2, and

2−(1 )
21

= 3 − 2 ln 22  0 when 2 = 1 − 2. In

case that 1 = 2 − 2, which occurs if 2 − 2  1
2
(2 + 2), that is if

1
3


2
2
, we obtain 00(

◦
1) =

2 ln
³
1− 2

2

´
+ 2

2
+

222
2(2−2)  2 ln

³
1− 2

2

´
+ 2

2
 2 ln 2

3
+ 2  0.

Given that − is convex, it follows that − is maximized at ̂1 = max{0 2 − 2} or at 1 = 2.

Since −(2) = 0, it follows that if −(̂1) ≤ 0 then −(1) ≤ 0 for each 1 ∈ [̂1 2] and
 − ≤ 0 for each (1 1), whereas if −(̂1)  0 then  −  0 for (1 1) close to (̂1 0).

7 Proof of Proposition 5

7.1 Case of 2 ≤ 2

Let 2 = 2 + 2,  = 22 − 2  0, 1 =
1
2
2

22
, 1 =

1
2
21 +


2
−2
2

1.

7.1.1 Proof that  −  0 for each (1 1) ∈ 2 such that 1 ≤ 1

When (1 1) ∈ 2 ,

 =  + ((1− 1)(2− 22 − 2)− 1 (1− 2 − 2))∆

 =  +

µ
2− 1

1 + 2 + 2
21 + 1

1 − (2− 2 − 2) (1 + 2 + 2)− 1(1 + 2 + 2) ln

µ
2 + 2 + 1

21 + 1

¶¶
∆
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hence (neglecting ∆)

 − = − 21 + (1− 2)1 − 1
1 + 2

21 + 1
1 − 1(1 + 2) ln

µ
1 + 2

21 + 1

¶
We now prove that    if 1 ≤ 1 and 1 = 0.

• When 1 = 0, we have that 
   boils down to

  21 + 1(1 + 2) ln

µ
1

2
+
1

2

2

1

¶
(29)

with 1 ≤ 2 ≤ 2
2
,52 hence

 
2

2
1 + 1(1 + 2) ln

µ
1

2
+
1

2

2

1

¶
(30)

implies (29). Moreover, ln( 1
2
+ 1

2
) 

√
− 1 for each   1. Therefore, setting  = 2

1
we conclude

that

 
2

2
1 + (1 + 2)

q
21 − 21 (31)

implies (30). In order for (31) to be satisfied, the right hand side in (31) needs to be smaller than 22− 2
2

because 2 ≤ 2 implies   22− 2
2
. Since

∙
2
2
1 + (1 + 2)

q
21 − 21

¸
1=

4
25
2

=
¡
2
25
+ 58

625

√
21
¢
22

is greater than 22− 2
2
for each 2 ∈ [12  1], and 2

2
1+(1+2)

q
21 − 21 is increasing in 1, it follows

that (31) implies 1  4
25
2. Then

2
2
1 + (1 + 2)

q
21 − 21 =

2
2

√
1
√
1 + (1 + 2)

√
21 

2
2
2
5

√
2
√
1+ (

4
25
2+ 2)

√
21 =

1
5

32
2

√
1+

29
25

32
2

√
1 =

34
25

32
2

√
1 

34
25
2
√
1. Hence (31) holds

if 1 ≤ 1.

• From Lemma 3(ii) we know that  − is strictly increasing with respect to 1 when (1 1) ∈ 2 .

Hence if (1 1) ∈ 2 with 1 ≤ 1 and 1  0, it follows that  −  is greater than  − 

when and 1 = 0, which we know to be positive.

7.1.2 Proof that 
1 −  0 for each (1 1) ∈ 1 such that 1 + 1 ≤ 1 +1

When (1 1) ∈ 1 , we have that 
 − is ∆ times

(22 + 2 − 2) 1 − (21 + 21 + 21) ln
2 + 2 + 1
1 + 1 + 1

+ (1− 2 − 22) (1 + 1) + (1− 2)1 +  (32)

We prove that for each (1 1) ∈ 1 such that 1+1 = 1+1 we have 
 −  0 and

(−)
1

 0.

Precisely, we evaluate  − in (32) at 1 = 0, 1 = 1 +1 =
1
2
21 +

2
2
1 =

1
2

³
((2+2)

2−2)2
2(2+2)

2

´2
+

2
2

((2+2)
2−2)2

2(2+2)
2 , with 1 =

((2+2)
2−2)2

2(2+2)
2 . Hence (32) is equal to

(22 + 2 − 2)
((2 + 2)

2 − 2)
2

2(2 + 2)
2

+ (1− 2 − 22)
Ã
1

2

µ
((2 + 2)

2 − 2)
2

2(2 + 2)
2

¶2
+

2
2

((2 + 2)
2 − 2)

2

2(2 + 2)
2

!

+22 + 222 + 22 − 2 −
Ãµ

((2 + 2)
2 − 2)

2

2(2 + 2)
2

¶2
+
((2 + 2)

2 − 2)
2

2(2 + 2)

!Ã
ln

22 (2 + 2)
2¡−2 + 22 + 22 + 222

¢2
!

52Hence 2
21

≥ 1, 1
2
+ 2

21
≥ 3

2
, ln


1
2
+ 2

21


 2

5
 0.
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which is positive for each (2 2) to the right of the purple curve in the figure. The bold curve is such that

  0 if and only if (2 2) is to the right of the bold curve. Hence 
 −  0 for each (2 2) such that

  0. Therefore  −  0 for each (1 1) ∈ 1 such that 1 + 1 = 1 +1 because we have seen

that  −  0 at 1 = 0, 1 = 1 +1, and as we reduce 1 and increase 1, keeping 1 + 1 equal to

1 + 1, 
 − increases by (18).

Now we derive
(−)

1
, which is equal to

(62 + 32 − 4)2
4
q
(1 + 1)2 +

1
4
22

−
⎛⎝2 +

22

2
q

1
4
22 + 2(1 + 1)

⎞⎠ ln
⎛⎝1 + 22 + 22 − 2(1 + 1)

2(1 + 1)− 2 + 2
q

1
4
22 + (1 + 1)2

⎞⎠
+1− 3

2
2 − 2

Notice that
(−)

1
depends on 1 1 only through 1+1, and 1+1 =

1
2
21+

2
2
1,
q
(1 +1)2 +

1
4
22 =

1
2
2 + 1, 1 = 1. Then at (1 1) ∈ 1 such that 1 + 1 = 1 +1 we have

( −)

1
=

(62 + 32 − 4)2
4(1
2
2 + 1)

−
µ
2 +

22

2( 1
2
2 + 1)

¶
ln

µ
2

1

¶
+ 1− 3

2
2 − 2

=
(62 + 32 − 4)2

4(1
2
2 +

((2+2)
2−2)2

2(2+2)
2 )

−
⎛⎝2 +

22

2( 1
2
2 +

((2+2)
2−2)2

2(2+2)
2 )

⎞⎠ ln
⎛⎝ 2

((2+2)
2−2)2

2(2+2)
2

⎞⎠+ 1− 3
2
2 − 2

and
(−)

1
 0 at each (1 1) such that 1 + 1 = 1 +1 if and only if (2 2) is to the right of the

red curve below, hence
(−)

1
 0 at each point such that   0.

0.0 0.1 0.2 0.3 0.4 0.5

0.4

0.6

0.8

1.0

lambda2

mu2

Since  − is convex in 1, it follows that
(−)

1
 0 for each (1 1) ∈ 1 such that 1+1 ≤

1 +1. But 
 −   0 for each (1 1) ∈ 1 such that 1 + 1 = 1 +1. Therefore 

 −   0

for each (1 1) ∈ 1 such that 1 + 1 ≤ 1 +1.

7.1.3 Conclusion

When 2 ≤ 2, the inequality 
 −  0 holds for each (1 1) such that 1 ≤ 1 and 1+1 ≤ 1+1.

7.2 Case of 2  2

Let  = 2+32−1−2(2−2)22 ln
2

2−2 be equal to (20) on lhs, hence   0, 1 = 2−2+ 2

2+22 ln
2

2−2
,

1 =
1
2
21 +

2−2
2

1.
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7.2.1 Proof that  −  0, for each (1 1) ∈ 2 such that 1 ≤ 1

Suppose that 1 = 0. Then 
1 −  0 boils down to (13) with 2 − 2  1 ≤ 2 ≤ 3

2
2 − 1

2
 2 (the

inequality 2 ≤ 3
2
2− 1

2
comes from 2+32− 1 ≥ 0). Notice that 2+(1+ 2) ln

³
1
2
+ 2

21

´
is decreasing

in 1.
53 Hence 1  2 − 2, implies 2 + (1 + 2) ln(

1
2
+ 2

21
)  2 + 22 ln

2
2−2 and    holds if

2 − 2  1 ≤ 

2+22 ln
2

2−2
or equivalently if 2 − 2  1 ≤ 1. Moreover, from Lemma 3(ii) we know

that  −  is strictly increasing with respect to 1 when (1 1) ∈ 2 . This implies that 

2  

holds for each (1 1) ∈ 2 such that 1 ≤ 1.

7.2.2 Case of 2 − 2 −1 ≥ 0
The inequality 2−2  1 is satisfied if and only if (2 2) lies below the blue curve in the following figure

0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

lambda2

mu2

Proof that  −   0 for each (1 1) in the triangle of 1 with vertices (2 − 2 −1 0),

(2 − 2 − 11), (2 − 2 0) when 2 − 2 − 1 ≥ 0 We consider (1 1) ∈ 1 and evaluate

 − at 1 = 2 − 2 −1, 1 = 0. Then we obtain

 − = 2− 22(2− 2 − 2)− 2(2 − 2)2 ln

µ
2

2 − 2

¶
− (2− 22 − 2 − (1− 2 − 2)1 − (1− 2)1)

= 2 − 22 (1− 2 − 2)− 2(2 − 2)2 ln

µ
2

2 − 2

¶
+ (2− 22 − 2)1

= 2 − 22 (1− 2 − 2)− 2(2 − 2)2 ln

µ
2

2 − 2

¶
+ (2− 22 − 2)

µ
2 − 2 − (

1

2
21 +

2 − 2

2
1)

¶
= 2 − 22 (1− 2 − 2)− 2(2 − 2)2 ln

µ
2

2 − 2

¶

+(2− 22 − 2)

⎛⎝2 − 2 −
1

2

Ã
2 − 2 +

2

2(1 + 2 ln
2

2−2 )

!2
− 2 − 2

2

Ã
2 − 2 +

2

2(1 + 2 ln
2

2−2

= 2
22 − 222 + 332 − 322 + 32 − 622 + 4222 + 5222 + 4

³
ln 2
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´
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³
ln 2
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´
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³
2 ln 2

2−2 + 1
´2

53Because its derivative is ln

1 + 2

21
− 1

2


− 2

1
 2

21
− 1

2
− 2

1
 0.
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which is positive whenever   0 because numeric analysis shows that 22− 222+332− 322+32− 622+
42

2
2 + 5

2
22 + 4

³
ln 2

2−2

´
32

³
ln 2

2−2 + 1
´
 0 for each (2 2) such that   0.

If 1 is raised above 2 − 2 − 1 (still with 1 = 0) till 2 − 2, then  −  increases, hence

 −   0. Moreover, if 1 is raised above from 0 till the diagonal border of 1 is reached, then

 −  increases, hence remains positive and  −   0 for each point in the triangle 1 with

vertices (2 − 2 −1 0), (2 − 2 −11), (2 − 2 0).

Proof that  −   0 for each (1 1) ∈ 1 such that 2 − 2 −1 ≤ 1, 1 + 1 ≤ 1 +1

when 2 − 2 −1 ≥ 0 We evaluate
(−)

1
at (1 1) = (11), using 1 +1 =

1
2
21 +

2
2
1 andq

(1 +1)2 +
1
4
22 =

1
2
2 + 1 = 2 − 1

2
2 +

2


2+32−1−2(2−2)22 ln

2
2−2


2(1+2 ln

2
2−2 )

, 1 = 1. Then

( −)

1
=

(62 + 32 − 4)2
4(2 − 1

2
2 +

2

2(1+2 ln
2

2−2 )
)
+ 1− 3

2
2 − 2

−

⎛⎜⎝2 +
22

2(2 − 1
2
2 +

2

2(1+2 ln
2

2−2 )
)

⎞⎟⎠ lnÃ22 2 ln 2
2−2 + 1

22 + 22 + 222 − 2

!

and
(−)

1
 0 for each 2 2 such that   0.

We evaluate  −  at 1 = 2 − 2 − 1, 1 = 2 − 2 + 1 + 21, so that 1 + 1 = 1 + 1,q
1
4
2 + 2(1 + 1) =

1
2
2 + 1, 1 = 1. Hence 

 −  is equal to the following, in which  = 2 +

22 ln
2

2−2 :

(22 + 2 − 2) 1 − (21 + 21 + 21) ln
2

1
+ (1− 2 − 22) (

1

2
21 +

2
2

1) + (1− 2) 1 + (2 + 2)
2 − 2

= − (1− 2 − 2) 1 − (21 + (2 + 2)1) ln
2

1
+ (1− 2 − 22) (

1

2
21 +

2
2

1) + (2 + 2)
2 − 2

= 1

µ
− (1− 2 − 2)− (1 + 2 + 2) ln

2

1
+
1− 2 − 22

2
(1 + 2)

¶
+
(2 + 2)

2 − 2


= 1

µ
1− 2 − 22

2

2


−
µ
2


+ 22

¶
ln

2


+ 22 ln

2

2 − 2

¶
= 1

µ
2



µ
1− 2 − 22

2
− ln

µ
1 +

2( − )

2 + (2 − 2)

¶¶
+ 22 ln

µ
1 +

2

(2 − 2)

¶¶
It is immediate that this expression is zero when  = 0, and numeric analysis shows it is positive if and only

if   0.

Conclusion for the case of 2  2 and 2 − 2 −1 ≥ 0    in the trapezoid with vertices

(2−2−1 0), (2−2−1 2−2+ 1+21), (11), (1 0), because starting from borders of 2

or 1 and increasing 1 decreases 
 − , but  −  0 at the diagonal edge of the trapezoid.

7.2.3 Case of 2 − 2 −1  0

Now suppose that (2 2) lies above the blue curve in the above figure, so that 2 − 2 −1  0.
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Proof that  −   0 for each (1 1) ∈ 1 when 2 − 2 −1  0 We consider (1 1) and

evaluate

− =

µ
2− 22(2− 2 − 2)− 2(2 − 2)2 ln

µ
2

2 − 2

¶¶
−(2− 22 − 2 − (2− 22 − 2)1 − (1− 2 − 2)1)

at 1 = 0, 1 = 0. Then 
 − = 2−22+222+222−22 (2 − 2) ln

2
2−2 , which is positive above

the red curve. In particular,  −   0 for 2 2 such that 2 − 2  1. Then  −   0 in the

whole triangle 1 .

Proof that −  0 for each (1 1) ∈ 1 such that 1+1 ≤ 1+1 when 2−2−1  0 We

consider (1 1) ∈ 1 and evaluate − from (32) at (1 1) = (0 1+1), hence 1+1 =
1
2
21+

2
2
1

and 1 = 1. Thus 
 − isÃ

2 − 2 +
2

2(1 + 2 ln
2

2−2 )

!Ã
22 + 2 − 2−

Ã
22 +

2

2(1 + 2 ln
2

2−2 )

!
ln22

1 + 2 ln 2
2−2

(2 + 2)
2 − 2

!

+(1− 2 − 22)
⎛⎝ 1

2

Ã
2 − 2 +

2

2(1 + 2 ln
2

2−2 )

!2
+

2
2

Ã
2 − 2 +

2

2(1 + 2 ln
2

2−2 )

!⎞⎠+ (2 + 2)
2 − 2

and it is positive if and only if (2 2) lies above the purple curve in the figure above. Hence it is positive

if (2 2) is above the blue curve

Conclusion for the case of 2  2 and 2 − 2 −1  0    at (1 1) = (0 1 +1) (just

found) and in each point on the segment which connects (0 1 +1) to (1 1) = (11) because 1 + 1

is fixed, but  −  is increasing in 1 and less increasing in 1. Hence 
   holds in the trapezoid

with vertices (0 0) (0 1 +1) (11) (1 0).

The trapzoid with the following vertices, with  = max{2 − 2 −1 0},

( 0) ( 1 +1 − ) (11) (1 0)

captures the case of 2 − 2 −1 ≥ 0 and of 2 − 2 −1  0 in a single writing.

7.3 Proof of Proposition 7

Step 0: When (1 1) ∈ 1 , 
 is strictly convex in 1 From (24) we see that  is equal to  plus

∆ times 2−(1+2+2)−12
1− 1

1+1
1

1+1
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´
and subtracting we obtain (neglecting the factor∆) (22 + 2 − 2) 1−(21+21+21) (ln(2 + 2 + 1)− ln(1 + 1 +

2 + 22 − 22 − 22 + 22 − 12 − 21 + 222 − (2 − 22 − 2)(1 − 1) + (1− 2 − 2)1. Hence the

derivative of  with respect to 1 (omitting the factor ∆) is
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and since 1 =
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To conclude, we prove that 2
q
2 +

1
4
22
¡
82+ 42 − 322 − 622 + 222

¢
+2

¡
82+ 82 − 1222 − 1222 − 22 + 4

0. First we show that 82+42− 322− 622+222  0. We know that 82+42− 322− 622+222 
82(2 − 2) + 42 − 322 − 622 + 222 = 42 − 1122 + 222 + 222, which is decreasing in 2 (since

−112+42  0), hence 42−1122+222+222  42−1122+222+222 = 2 (4− 72)  0 (for 2  1
2
)

and 42− 1122+222+222  42− 112(1−2)+2
2
2+2(1−2)

2 = (32 − 1) (52 − 2)  0 for 2  1
2
.
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Finally, since 82+42−322−622+222  0 it follows that 2
q
2 +

1
4
22
¡
82+ 42 − 322 − 622 + 222

¢
+2

¡
82+ 82 − 1222 − 1222 − 22 + 42

¢
is increasing in . We evaluate this expression at  = 2−2,

and we find 2
¡
2 − 1

2
2
¢ ¡
82(2 − 2) + 42 − 322 − 622 + 222

¢
+2

¡
82(2 − 2) + 82 − 1222 − 1222 − 22 + 42

¢
−44222+1622+14222−232. This is decreasing in 2 because−4422+2822−622  −4422+2822−622 =
−1622− 622  0. Hence −44222+1622+14222− 232 = 1622 (1− 22)  0 for 2  1

2
, −4422(1− 2) +

1622 + 142(1− 2)
2 − 2(1− 2)

3 = 2 (52 − 1) (22 − 1) (32 − 1)  0 for 2  1
2
.

Step 1: The case of 2 ≤ 2, that is 2 ≤ 1
2

Suppose that 2 ≤ 2. We consider (1 1) = (2 2)

and prove that there exists ∗ ∈ (0 1) such that    if and only if  ∈ [0 ∗).
Let () =  − . We know from Proposition 4(i) that (0)  0. We prove below that ()  0 for

 close to 1, hence the set { ∈ (0 1) : () = 0} is non-empty. We show moreover that  is strictly convex,
which implies that the set { ∈ (0 1) : () = 0} consists of a single element: if we let ∗ = min{ ∈ (0 1) :
() = 0}, it follows that ()  0 for each  ∈ (0 ∗) by definition of ∗, and ()  0 for each  ∈ (∗ 1)
since  strictly convex implies ()  1−

1−∗ (
∗)+ −∗

1−∗ (1) and the right hand side is zero since (
∗) = 0

by definition of ∗, (1) = 0 because  = 1 implies (1 1) = (2 2).
In order to see that ()  0 for  close to 1, we use (1) = 0 and show below that 0(1)  0; thus

()  0 for  close to 1 follows. Recall from Lemma 3(i) that when (1 1) ∈ 1 , 
 depends on

1 1 only through 1 + 1. Hence


1
= 

1
, and given (1 1) = (2 2) we find that




=

2


1
+ 2



1
= 

1
since 2 + 2 = 1. We prove below that (omitting the irrelevant factor ∆  0)



1
= (22 + 2 − 2) 01 − (2101 + 2
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− 2

with 1 =
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1
4
22 + 2(1 + 1) − 1

2
2 and 01 =

2

2
√

1
4
22+2(1+1)

. At  = 1 we have 1 + 1 = 1 and

1 = 2, 
0
1 =

2
1+2

, hence 

1
= −2 1−21+2

. From (17) it follows that 


= −2(1 − 2). Finally,

0(1) = 


− 


= 

1
− 


= 22

1−2
1+2

 0.

Step 2: The case of 2  2, that is 2 
1
2

Suppose that 2  2. We consider (1 1) = (2 2)

and prove that there exists an interval , including  = 22 − 1, such that    if and only if  ∈ .

Let () = − . First notice that  = 22−1 is such that 1+1 = 2−2 (that is, 1+1 = 22−1).
This means that when  = 22 − 1, (1 1) lies on the boundary between 1 and 1 : see Figure

1b. Thus (17) and (25) reveal that (22 − 1) is equal to ∆ times (1− 2)
¡
1− 2 + 2

2
2

¢ − 22(22 −
1) ln

³
1 + 1−2

22−1
´
. We prove below that (22 − 1)  0 for each 2 ∈ ( 12  1).

• For 2 ∈ ( 12  1625 ] we use the inequality ln(1 + ) 
√
.54 Thus
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¶
54This inequality holds for each   0, as it holds with equality when  = 0 and the derivative of

√
 − ln (1 + ) is

(1−√)2
2
√
(1+)

≥ 0. Finally, notice that 1−2
22−1 in ln


1 + 1−2

22−1

is positive since 2 

1
2
.
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and
√
1− 2

³
2 +

1
22
− 1

2

´
− √22 − 1 is decreasing in the interval (12  1625 ], is positive at 2 = 16

25
.

Therefore it is positive and (22 − 1)  0 for each 2 ∈ (12  1625 ].

• For 2 ∈ (1625  1) we use the inequality ln(1+)  − 1
2
2+ 1

3
3, which holds for each   0 by Taylor’s

theoremHence (22−1)  (1− 2)
¡
1− 2 + 2

2
2

¢−22(22−1)µ 1−2
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+ 1
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´3¶
=

(1−2)3
3(22−1)2

¡
2422 − 202 + 3

¢
. The latter expression is positive for each 2 ∈ ( 1625  1), therefore (22 −

1)  0 for each 2 ∈ ( 1625  1).

After establishing that (22− 1)  0, we notice that the set of  ∈ (0 22− 1) such that ()  0 is an
interval (with upper bound 22 − 1) since  is linear in  when  ∈ (0 22 − 1) as (1 1) = (2 2) ∈
1 and  is constant with respect to ,  is linear in 1 1. The set of  ∈ (22 − 1 1) such that
()  0 is an interval (with lower bound 22 − 1) as  − is convex in , by the same argument given

in the proof for Step 1. In particular, when  ∈ (0 22 − 1) we have that () turns out to be equal to,
from (17) and (25), 2 − 22 − 22(22 − 1) ln 2

22−1 − (1 − 2)(1 − 2), and this is positive if and only if

 
2−1+22(22−1) ln


1+

1−2
22−1


2(1−2) . Finally, we notice that the latter right hand side tends to 1 as 2 → 1. ¥
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