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Abstract

Climate change has directed policymakers’ focus to the impact of economic policies on
global emissions. And there is a urgent need for environmental policies to reduce emissions.
This paper explores the effects of emission charges within a monopoly framework where the
demand function is unknown. Unlike traditional analyses, this research examines how emission
charges, multiple equilibria, and their stability affect emissions reduction policies, particularly
in scenarios involving non-linear dynamics and initial conditions.

We investigate a monopolist introducing a new product, who learns the demand function
using a rule of thumb. This approach reveals that while emission charges generally reduce pro-
duction and emissions, they can also lead to multiple equilibria - two maxima and a minimum
- depending on demand and cost parameters. The stability of these equilibria is influenced by
initial conditions and the firm’s response to marginal returns. High taxation can destabilize
production, resulting in fluctuating emissions.

This research contributes to the theoretical literature on environmental governance by em-
phasizing the importance of non-linearity and the unknown demand function in shaping policy
outcomes. Also through numerical analysis, we show that learning processes significantly im-
pact the stability of multiple equilibria, highlighting the complexities in designing effective
environmental policies in real-world economic contexts.
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1 Introduction

Climate change is focusing policymakers’ attention toward the role that various economic policy
instruments can play in influencing global emissions. According to the IPCC report (2022), the
adoption of environmental policies aimed at reducing production and emissions is urgent. At the
same time, the role of non-linearities in explaining the possible non-trivial effects of environmental
policies on the production system is relevant.

To the best of our knowledge, the relationship between emission charges, multiple equilibria and
how their (in)stability may (or may not) affect emission reduction policy has not been well studied
in a monopoly framework with an unknown demand function. We believe that it certainly deserves
maximum attention, as the dynamics, through the presence of positive and negative feedbacks, can
influence the final outcome of a given economic policy. Non-trivial unexpected results could arise
from specific initial conditions as well as from complex dynamics.

The literature on the effects of emissions charges on production levels and global emissions is
now mature. In this paper we want to focus on the effects of emissions charges when the demand
function is unknown and there is the possibility of multiple equilibria. Specifically, we consider the
case where a new good enters the market and the only producer (monopolist) does not know the
demand function but learns it by a rule of thumb. Furthermore, we focus on the possibility that the
demand function has characteristics that lead to multiple equilibria. A monopoly, although simple,
can provide us with different and clear insights. Moreover, precisely because of its simplicity, the
finding of non-trivial effects within this framework leads us to be cautious in a more complicated
economic environment, where the interactions between consumers and firms play an additional role.

We find, as expected, that the increase in emissions charges leads to a reduction in produc-
tion and hence in emissions themselves. However, in the presence of an increasing segment of the
marginal revenue curve, two other stationary states can emerge, therefore leading to the coexistence
of two maxima and a minimum. While the minimum is always unstable, the stability of the two
maxima depends on the cost and demand parameters and the firm’s response to marginal profits.
The minimum is the separating value between two attractors. This means that the strength of
the anti-emissions policy depends crucially on the initial conditions. At the same time, too high a
level of taxation leads to instability of the maxima, making production (and therefore emissions)
unstable. Finally, the two attractors merge and production moves between a minimum and a
maximum, leading also to strong fluctuations in emissions.

Our paper lies in a wider theoretical and empirical literature in economics on environmental
governance and climate action with an dynamical approach (see Costanza et al., 1993 and Bargigli
and Ricchiuti, 2022). Methodologically, it relates on the role of non-linearity and unknown de-
mand function in shaping environmental policies. In the third chapter of her well-known book
on Imperfect Competition, Joan Robinson discusses the case in which there are multiple equi-
libria in the monopoly framework (Robinson, 1969, pp.57). She states that: ‘Cases of multiple
equilibrium may arise when the demand curve changes its slope, being highly elastic for a stretch,
then perhaps becoming relatively inelastic, then elastic again. This may happen, for instance, in a
market composed of several groups of consumers each with a different level of incomes. [...]’. The
demand function that Robinson has in mind is such that the corresponding marginal revenue has
an increasing trait between two decreasing traits. Walters (1980) studies the case of an increasing
marginal revenue when there is a convex kinked demand curve. While Formby et al. (1982) show
that the condition for an increasing marginal revenue are not at all stringent and, therefore, the
existence of multiple equilibria can be pervasive. However, they both show these conditions with
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numerical examples.
In the same pages Joan Robinson discussed the possibility that consumers do not know the

entire demand function, highlighting that: ‘it is natural to object that this method of analysis is
highly artificial. Of what use, the reader may ask, to discuss fine points of analysis which depend
upon the shapes of demand curves when no everyday monopolist has any such ideas in his mind,
and when even the most up-to-date business have only the vaguest notion of what kind of demand
curves they have to deal with? [...]’ And again: ‘We need not imagine that he is able to plot the
demand and cost curves throughout their length, but merely that he can see whether selling a little
more of his product than he does at present will increase or decrease his net gains. As long as
marginal revenue exceeds marginal cost, there will be a tendency for him to increase output, and as
long as marginal revenue falls short of marginal cost, there will be a tendency for him to contract
output, and he will be in equilibrium at the monopoly point.’ To the best of our knowledge, Clower
(1959, p. 705) firstly highlights the importance of “introduce [. . . ] complications into traditional
models of price and output determination”, assuming, within the monopoly mathematical frame-
work, that consumers have no information on the demand function.

Two different lines of research have investigated the agents’ behavior when the demand function
is unknown. Within the first approach, firms form conjectures analyzing the interaction between
past decisions and market mechanisms. This research’s line started with the seminal paper of
Negishi (1961). He introduces, in a general equilibrium model, imperfect competitors who act as
price maker; assuming that monopolistically competitive firms deal with subjective inverse demand
(supply) functions for their output (inputs), they conjecture that the demand is a decreasing
linear function of the price and pass through the observed status quo. Silvestre (1977) adds
an hypothesis in order to link subjective and objective demand function: the slope of the former
demand curve coincides with the slope of the latter, meaning that firms know the current elasticity.
While this approach focuses mainly on the existence of equilibria, it fails to consider the crucial
problem of determining how agents coordinate each other in order to reach the optimal choice.
Recently, several authors (Leonard and Nishimura, 1999; Tuinstra, 2004; Naimzada and Sbragia,
2007, Naimzada and Ricchiuti, 2011) have analyzed decision making processes when agents have
bounded rationality and the rational choice emerges through the dynamical processes of selection,
adaptation and learning (Alchian, 1950).

The second approach assumes that firms try to extrapolate information using simple rules of
thumb, in line with Robinson’s discussion reported above. Baumol and Quandt (1964) firstly
suggest, as a rule of thumb, the gradient rule within a monopoly model. In order to mimic the
knowledge of the demand function, the monopolist expects that if there is a positive (negative)
variation of profits, this could move the price in the same (opposite) direction as that of the pre-
vious period. Otherwise, if profits do not change, the monopolist will not change the price. This
mechanism generates a steady state that is exactly the level of price that maximizes profits, as
in classical microeconomic theory. Puu (1995) recovers their model in a discrete time setting em-
ploying a demand function that has an inflection point: a cubic demand. Naimzada and Ricchiuti
(2008) show that complex dynamics can be achieved even if the demand function does not have
an inflection point: it is sufficient an high enough reaction coefficient to profit variations.

Throughout the present paper, we use the second approach, assuming that the demand function
is like the one studied by Puu and, in particular, focusing on the set of parameters such that the
marginal revenue (as suggested by Joan Robinson) has an increasing trait.

These two elements allow us to better study the effects of environmental policy, as analyzed by
Mamada and Perring (2020), both on the number of equilibria and on their stability, thus giving
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us some insights into the emission charges over time1. Mamada and Perrings (2020) study how
emission charges affect market structure, output and emissions in Cournot competition. Assuming
myopic decision making and partial matching, we find that increasing marginal emission charges
stabilise duopolies, while decreasing charges destabilise them, leading to monopolies. Equilibrium
output and emissions are higher under cost structures favouring monopolies than those favouring
duopolies.

Matsumoto and Szidarovszky (2022) develop an n-firm Cournot oligopoly with a hyperbolic
price function and use a game-theoretic approach to examine how environmental charges affect
total and individual NPS pollution levels. The main findings are: (1) individual Cournot output is
affected by marginal production cost, average abatement technology, and the number of firms; (2)
environmental charges effectively control total NPS pollution when the average marginal production
cost is less than the average emission coefficient; (3) environmental charges control individual
pollution when the tax rate and the average pollution level are high enough; (4) stronger conditions
are required for the effectiveness of environmental charges under hyperbolic demand compared to
linear demand.

Naimzada and Pireddu (2023) extend the dynamic Cournot duopoly model with emission
charges of Mamada and Perrings (2020) to differentiated goods and analyse static and dynamic
results. Firms are taxed on their own emissions using quadratic charge functions, and adjust
output partly due to capacity constraints. The steady state, which is consistent with the Nash
equilibrium, is allowed if marginal emission charges are positive. Their results show that envi-
ronmental policy is fully effective and globally stable for independent goods or goods with low
interdependence, whether substitutes or complements. In an other paper, Naimzada and Pireddu
(2024) replace the linear partial adjustment rule in Mamada and Perrings (2020) with a sigmoid
adaptive best response mechanism in a Cournot duopoly model with quadratic emission charges
and homogeneous goods. The sigmoid nonlinearity accounts for bounded output variations due to
constraints and produces stable dynamic outcomes. They analyse the stability of the unique steady
state (Nash equilibrium) and the impact of parameters on stability. Two comparative dynamics
studies evaluate the effectiveness of environmental policy when the Nash equilibrium is unstable.
The first shows the effectiveness of the policy for both complements and substitutes at different
charge levels. The second reveals higher emissions along non-stationary trajectories compared to
the equilibrium path, demonstrating that adjusting the sigmoid mechanism can reduce output
fluctuations, stabilize the system and limit pollution.

The rest of the paper is organized as follows. In Section 2 we present the model and discuss
the existence and stability of multiple equilibria. In Section 3, through numerical simulations, we
show how the learning process affect the stability of equilibria. In Section 4 we discuss and report
concluding remarks.

2 The model

Following the intuition of Robinson (1928) discussed above, we assume that the demand function
is cubic (see Puu, 1990 and Naimzada and Ricchiuti, 2008), and it comes in the form:

P (q) = a− b

2
q +

c

3
q2 − d

4
q3 (1)

where q > 0 is the output and a, b, c, d are positive constants. The corresponding revenue function
is R(q) = q · P (q). It is easily seen that P is a strictly decreasing function on the positive axis

1The present paper will not address other mechanisms used by governments to deal with climate change, as
Emission Trading Systems (see for example Antoci et al.,2022)
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provided c2 < (27/8)bd and that the marginal revenue function R′ has a local minimum and a
local maximum, that is its graph displays an increasing trait, provided c2 > 3bd (see Figure 1).
Since 3 < 27/8, this means that we may ensure both features by selecting c in the interval:

√
3bd < c <

√
27

8
bd. (2)

We next assume that production costs are quadratic in q and given by the function

Cp(q) =
m

2
q2 (3)

for a positive constant m.
Finally, the monopolist is subject to emission charges that are quadratic in the output (as in

Mamada and Perrings, 2020; Naimzada and Pireddu, 2023), and given by the function

Ce(q) = ku+
ks

2
u2 u = εq (4)

where the positive constants k, ε, s are the key parameters of the environmental policy. Indeed,
here: k is the intensity of environmental policy, s determines the shape of Ce and ε gives the
emission per unit output.

Figure 1: Downward demand function and marginal revenue with positive slope

The profit is then given by the quartic function

π(q) = q · P (q)− Cp(q)− Ce(q) = (a− εk)q − b+m+ sε2k

2
q2 +

c

3
q3 − d

4
q4 (5)

and the marginal profit π′ is a cubic function, thus presenting the possibility of multiple equilibria.
We assume that the market is new and it needs to be explored, therefore the monopolist does

not know the entire demand function. She uses a simple rule of thumb - a gradient rule - choosing
the quantity to be produced (Baumol and Quandt, 1964; Puu, 1990; Bischi and Lamantia, 2002;
Naimzada and Ricchiuti 2008). Over time, the production increases (decreases) if the marginal
profit increases (decreases) and it is stable when the marginal profit is zero. This mechanism is
captured by the following dynamics:

qt+1 = qt + γπ′(qt) (6)

where the positive constant γ describes how the output reacts to marginal profit’s variations. We
immediately see that the steady states of the dynamics (6) are precisely the critical points of the
profit function π, that is the points where the marginal profit π′ vanishes.
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2.1 Steady states and equilibria

In what follows, we discuss the existence and the number of equilibria for the dynamics (6), that
are the positive zeros of the cubic function

π′(q) = a− εk − (b+m+ sε2k)q + cq2 − dq3 (7)

We may safely assume that when production is zero the marginal profit is positive, that is we posit
a > εk. In order to ease notation, we set

A = a− εk B = b+m+ sε2k C = c D = d (8)

so that
π′(q) = A−Bq + Cq2 −Dq3 (9)

We observe that all four constants in (8) are positive, by the stated assumptions on the parameters.
Therefore, by Descartes’ Rule of Signs, the number of positive roots of the cubic function π′ in
(9), with properly counted multiplicities, is either 1 or 3. In other words, there exists at least one
and at most three equilibria for the dynamics (6). Moreover, recalling that the discriminant of the
cubic equation π′ = 0 is defined as

∆ = 18ABCD − 4AC3 +B2C2 − 4B3D − 27A2D2, (10)

a classical result in Algebra (see Irving, 2004) states that the case ∆ > 0 corresponds to three
distinct positive roots, while the case ∆ < 0 corresponds to just one positive root.2

Let us next discuss how the intensity of the environmental policy k influences the number of
equilibria. To this end, we first observe that the marginal profit π′ is the difference between the
marginal revenue (MR) and the marginal cost (MC). The former does not depend on k, and this
fact eases the analysis of the effect of taxation on the existence of multiple equilibria when the MR
graph has an increasing trait. For all values of k, the graph of MC is a half-line starting from the
value εk and having slope m + sε2k. Figure 3, which is based on a choice of the parameters to
be specified later, depicts a typical situation. When k = 0 the half-line starts from the origin and
crosses the graph of MR just once, for a high value of the output. By increasing k, the half-line
representing MC moves upward to the left and it crosses the MR curve at a lower level. This means
that when the environmental policy is enforced, marginal costs increase and the output maximizing
profits is lower, the equilibrium being still unique. However, there is a threshold k for which the
half-line is tangent to the MR graph at a lower level than the existing equilibrium. Therefore,
when k > k two new equilibria emerge. The number of equilibria is three until k reaches a second,
higher threshold k for which the half-line is again tangent to the MR graph. Then, for all values
of k above k, we come back to a unique equilibrium.3

In order to obtain a more general picture, we insert (8) into (10) and write ∆ as a cubic function
of k, thus getting

∆(k) = η3k
3 + η2k

2 + η1k + η0

where the constants ηi depend on all the other coefficients of the system. It turns out that, under
the standing assumption c2 < 27bd/8, both η3 and η2 are negative. This fact has two relevant
consequences. First, it is always the case that, for all k high enough, ∆(k) < 0, i.e. there is a
unique steady state. Second, by Descartes’ Rule of Signs, ∆(k) = 0 may have 0, 1 or 2 positive
roots, depending on the choice of the coefficients. In the first case, there is a unique steady state for

2The boundary case ∆ = 0 corresponds to either 2 positive roots, one simple and one double, or a unique triple
positive root.

3A simular effect can be due to a change in ε ans s. We focus on k because this parameter does not depend on
technology applied but on the environmental policy.
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all k. In the second case, there are three equilibria when k stays below a given positive threshold
and a unique equilibrium otherwise. Finally, in the last case we are in the setting of Figure 3,
described above (and the two roots are precisely k and k).

The above description can be seen as a static type result which is an intersection between
an exercise of comparative statics and one of multiplicity of equilibria. However, it helps us to
highlight two important features of the model. Firstly, from a static point of view, an increase
in emission charges leads to a decrease in the quantity produced and, consequently, a decrease in
emissions. Secondly, an increase of the parameter k may have a dramatic effect on the existence
of multiple equilibria. Therefore, in order to better understand the effects of the environmental
policy on emissions, the stability of equilibria may give us further information (see Benhabib et
al., 1999 and Menuet et al, 2023). In the next section, we are going to study how the parameter k
(but also ε and s) influences the stability of the equilibria.

2.2 Stability of the equilibria

It is well known that a steady state q∗ of the dynamics (6), i.e. a positive root of π′(q) = 0, is
asymptotically stable provided |1 + γπ′′(q∗)| < 1, that is, provided

− 2

γ
< π′′(q∗) < 0

and it is unstable provided one of the two previous inequalities holds (strictly) in the opposite
direction. So, we have the following cases for a steady state:

• if π′′(q∗) < −2/γ, then q∗ locally maximizes the profit, but q∗ is unstable

• if −2/γ < π′′(q∗) < 0, then q∗ locally maximizes the profit and q∗ is asymptotically stable

• if π′′(q∗) > 0, then q∗ locally minimizes the profit and q∗ is unstable

The two boundary cases π′′(q∗) = 0 or −2/γ are inconclusive.
From (8) and (9), the conditions for stability of a steady state q∗ read

− 2

γ
< −(b+m+ sε2k) + 2cq∗ − 3dq2∗ < 0 (11)

and we see that they crucially depend on the constant γ (though, they not depend on a).

3 Simulations

In this section we analyse, through simulations, the role of the environmental policy on the number
and stability of equilibria. The aim is to highlight relevant elements that, in our view, need to be
taken into account in the implementation of the environmental policy. We will focus on the role
of k and ε, in particular analyzing the case where the demand function admits up to three steady
states. Throughout all simulations we will consider the following simple choice for the parameters
d,m, s:

d = 1 m = 1 s = 1. (12)

3.1 The role of k

Let us consider the following set of parameters for the demand function:

a = 70 b = 50 c = 12.80 (13)
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They satisfy condition (2), and this guarantees that the graph of the marginal revenue has an
increasing trait. The graph of the profit function corresponding to k = 10 and ε = 0.3 is reported
in Figure 2 on the left: we clearly see the existence of three critical points, two local maxima and
a local minimum. This is consistent with Figure 2 on the right, where the graph of the marginal
revenue (black) is crossed three times by the half-line of the marginal cost (red).

Figure 2: Left: profit vs q; right: Marginal Revenue (black) and Marginal Cost (red) vs q. Both
graphs: model as in (12) and (13) with k = 10 and ε = 0.3.

Figure 3: Marginal Revenue (black) and Marginal Cost (red) vs q for model as in (12) and (13)
with ε = 0.3 and different values of k (from the bottom to the top half-line: k = 0, 8.64, 10, 13.42,
20).

Figure 3 illustrates the critical role of the parameter k in determining the number of steady
states. For k = 0, a unique steady state exists. As k increases, the marginal costs rise, leading to a
decrease in the profit-maximizing quantity, yet the equilibrium remains unique provided k remains
below the threshold k ≈ 8.64. Within the interval k ∈ (k, k), where k ≈ 13.42, three equilibria
emerge. For all k > k, the system reverts to a single equilibrium. Thus, increasing emission charges
result in reduced production and, consequently, lower emissions.

3.2 The role of γ on stability

As always in this literature, a crucial role in characterizing stability of equilibria is played by the
parameter γ, which describes the responsiveness of the monopolist. Indeed, a steady state may
become unstable if the monopolist overreacts to changes in marginal profit. Note, however, that γ
plays no role in determining the number and location of equilibria.
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(a) γ = 0.15 (b) γ = 0.30 (c) γ = 0.45

Figure 4: Steady states vs k for dynamics (6) for the model as (12) and (13) with ε = 0.3 (black:
stable; red: unstable)

In Figure 4 we plot, for three different values of γ, the steady states as a function of k, specifying
whether the state is stable (black) or unstable (red). We can observe that the areas of instability
increase as γ increases. It is also confirmed that the central steady state, the minimum of the
profit function, is always unstable, as discussed above.

3.3 Two equal maximum levels and the role of ε and k

Let us now consider the following set of parameters, still ensuring an increasing trait in the graph
of the marginal revenue:

a = 70 b = 52 c = 13.19 (14)

Figure 5 shows the effect that the parameters k and ε have on the number and stability of the
equilibria. The left graph confirms the existence of two thresholds k and k such that three equilibria
co-exist whenever k ∈ (k, k). Remarkably, a similar pattern can be observed when considering the
dependence on ε, as it is evident from the right graph. We can also observe that, as both the
intensity of environmental policy (k) and the emission per unit of output (ε) increase, the profit-
maximising output decreases. From either graphs we can notice that the choice k = 10 and
ε = 0.3 yields a ”symmetric” configuration, in which the two outer equilibria are roughly at a same
distance from the inner one. This symmetry is broken as we move apart from those values of
the two parameters. Next, sufficiently low or high values of the two parameters make the unique
equilibrium unstable. Finally, in both cases, it is possible to choose the parameters (k just below
5 on the left graph, ε just below 0.2 in the right one) under which a stable maximum coexists with
an unstable one.

We now fix
k = 10 ε = 0.3 γ = 0.15 (15)

Figure 6 shows that in this case the are two stable local maxima, located at 2.4 and 6.4, respectively,
whose profit is roughly at the same level (58.1). We can then easily simulate the dynamics (6),
starting from a grids of initial points between q0 = 0 and q0 = 9. The numerical results are not
surprising: the long-run average4 of the quantity coincides with 2.4 when q0 is below the unstable
equilibrium (located at 4.4) and with 6.4 otherwise. As far as the long-run profit is concerned, this
is always the common maximum level 58.1, independently from the initial quantity q0.

4The average is computed over 2000 steps of the dynamics, with the first 100 steps considered as ”transient”,
hence discarded.
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(a) γ = 0.15 and ε = 0.3 (b) γ = 0.15 and k = 10

Figure 5: Location of steady states vs k (left) and ε (right) for the model as in (12) and (14).
Black: stable; red: unstable.

Figure 6: Profit vs quantity for the model as in (12), (14) and (15). Blue: stable equilibrium, red:
unstable.

3.4 A lower maximum may lead to higher profits

The most interesting case is when the two local maxima are characterized by a different level of
profit. In the following we consider the parameters

a = 100 b = 71.17 c = 15.42 (16)

satisfying condition (2).
Figure 7 (left) shows that the profit function has two maxima located at q∗l and q∗h, with

q∗l < q∗h and π(q∗l ) > π(q∗h). Furthermore, the same Figure (right) shows that these two maxima
are unstable for values of k below a threshold (roughly equal to 23), while for k roughly in the
interval (23, 47), q∗l is unstable while q∗h is stable.5

We then ran the dynamics (6) for the considered model, with varying initial quantity q0, and
computed the average and the standard deviation of the obtained time series of quantities and
profits.6 Results are displayed in Figure 8 for the case k = 8, corresponding to both steady states

5This is true also for specific values of ε.
6As before, we consider 2000 steps and discard the first 100
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Figure 7: Left: profit vs q for model as in (12) and (16) with ε = 0.10 and k = 8; vertical bars:
steady states (blue: stable; red: unstable). Right: steady states vs k (black: stable; red: unstable).
Both graphs: γ = 0.20

being unstable. Remarkably, starting from an initial quantity q0 around q∗h results in a higher
long-run average profit than starting around q∗l , notwithstanding the fact that π(q∗l ) > π(q∗h).

Thus, there is a clear trade-off between policymakers, who would like to reduce the quantity
produced, and the monopolist, who would suffer a reduction in profits (on average). At the same
time, it is important to stress that this trade-off only emerges through the analysis of equilibrium
stability. By comparing the two steady states, it would have been clear (also for the firm) to choose
the one with a lower quantity, corresponding to a higher profit (at the steady state).

Figure 8: Left: dynamic average (top) and standard deviation (bottom) of a time series of quantities
according to dynamics (6) vs initial quantity q0. Right: same graphs for profit. All graph refer to
model as in (12) and (16) with ε = 0.10, k = 8 and γ = 0.20

This result crucially depends on the value of the parameter γ. Indeed, as clearly shown in Figure
(9a), an increase in γ, i.e. an higher monopolist’s responsiveness, results in an increased production
quantity. Moreover, given that q∗h is stable, this leads to an overall increase in production and
emissions.

On the other hand, as Figure (9a) shows, if the reactivity of the monopolist is high (γ ∈
(0.219, 0.239)), even though it starts from a low production value, the monopolist falls back to the
attractor with the highest production. Moreover, a further increase in the monopolist’s reaction
leads to the merge of the two attractors and production (as well as emissions) fluctuates between
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a low and a high value.
Figure (9b) complements this reading by showing that even if γ is set at a ‘low’ value, an

increase in k - a tightening of environmental policy - leads to an increase in output fluctuations
with a consequent reduction in emission control.

(a) k = 8 and ε = 0.10 (b) γ = 0.15 and ε = 0.10

Figure 9: Bifurcation Diagram for γ (left) and k (right). Both graphs refer to dynamics (6) and
model as in (12) and (16) and q0 = 4

The policy implication is clear: in addition to emission charges, the Governments’ focus should
be on the behaviour of firms. Therefore, a study of the dynamics provides insights that go beyond
the static analysis.

4 Discussion and Conclusions

The ongoing climate crisis calls for robust economic policies to mitigate the damage, with taxation
playing a central role. Our results provide several key insights into the effects of emissions charges.

Increasing emissions charges reduce production and hence emissions. With a bend in the inverse
demand function and an increasing segment of the marginal revenue curve, two additional steady
states can emerge, leading to the coexistence of two maxima and a minimum. The minimum is
always unstable, while the stability of the two maxima depends on cost and demand parameters,
as well as the firm’s response to marginal returns. The minimum serves as a separating value
between two attractors, implying that the effectiveness of emissions policies is highly sensitive to
initial conditions. Excessive increases in emissions taxes can destabilise the maxima, leading to
unstable production and emissions. Beyond a certain point, the two attractors converge, causing
production to fluctuate between a minimum and a maximum and leading to significant emissions
volatility.

These findings highlight the complex interplay between emissions charges and market dynamics,
and underline the need for carefully calibrated environmental policies to achieve stable and effective
outcomes.
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