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Abstract

This paper analyzes a structural model of corporate debt in the spirit of Leland’s
model [7] within a more realistic general context where payouts and asymmetric tax-
code provisions are introduced. We analytically derive the value of the tax benefit
claim in this context and study the joint effect of tax asymmetry and payouts on
optimal corporate financing decisions. Results show a quantitatively significant impact
on both optimal debt issuance and leverage ratios, thus providing a way to explain
differences in observed leverage across firms.

JEL Classification: G32, G33

Keywords: structural model; corporate debt; endogenous bankruptcy; optimal stop-
ping; tax benefits of debt.

1 Introduction

A firm’s capital structure decision is a complex issue due to many variables entering in
the determinacy of corporate financing policy, i.e. riskiness of the firm, bankruptcy costs,
payouts, interest rates and taxes. In particular corporate tax rates are a fundamental
factor in corporate financing decisions, as early recognized by [12] and observed in more
recent empirical studies [4, 13].

In this paper we consider a firm subject to default risk in a framework with bankruptcy
costs and taxes, whose owners can optimally choose the capital structure by maximizing
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the total value of the firm. We extend the model proposed by [7] by means of a switching
(even debt dependent) in tax savings and the introduction of a company’s assets payout
ratio. We perform a quantitative study of the effects of both factors on the optimal
capital structure of the firm, obtaining analytical results in most cases. As a matter
of fact, tax code provisions can vary across nations, across industries, across activity
sector in which the firm is operating in, and also across time (e.g. when the tax code is
modified to encourage investments, [14], [13] footnote 1). The economic insight we want
to analyze is how asymmetry in tax-code provisions is incorporated in firm’s financing
decisions and moreover its quantitative impact on optimal debt issuance and leverage
ratios. Our findings show that the combined effect of tax asymmetry and payouts produces
predicted optimal leverage ratios which are more in line with historical norms (significantly
reduced w.r.t. the ones in [7]) and empirical evidence.

Following [7] we consider an infinite horizon assuming that the firm issues debt and
debt is perpetual. Debt pays a constant coupon per instant of time and this determines tax
benefits proportional to coupon payments. A payout rate is also introduced as in [2] and
[15]. Structural models assume constant corporate tax rates, thus tax benefits of debt are
constant through time. The original assumption in [7] is that the firm has deductibility of
interest payments for all firm’s assets values above the failure level, producing a constant
tax-sheltering value of interest payments. Leland argues that default and leverage decisions
might be affected by non constant corporate tax rates, because a loss of tax advantages
is possible for low firm values. Thus in [7] section VI.A the author suggests that, when
assets value decreases, it is more likely that profits will be lower than coupon payments
and the firm will not be able to fully benefit tax savings. The empirical analysis of [4]
confirms that the corporate tax schedule is asymmetric, in most cases it is convex. The
quantitative impact of this asymmetry on the optimal default boundary and leverage ratio
is considered in [13] under the hypothesis of a piecewise linear tax function when the state
variable is the operating income; the simulation study therein shows that the effect of tax
asymmetry on the optimal leverage ratio is quantitatively significant, while it is lower on
the optimal default boundary. Further [14] examines the relation between tax convexity
and investment in the presence of a strictly convex (quadratic) tax function.

In this paper we extend Leland model by incorporating the possibility of two different
corporate tax rates, namely τ1, τ2 and net cash outflows. We consider as state variable
firm’s current assets value. The switching from a corporate tax rate to the other is deter-
mined by the firm value crossing a critical level. We study two alternative frameworks: at
first, the switching barrier is assumed to be a constant exogenous level; then we analyze a
more realistic scenario in which this level depends upon the amount of debt issued by the
firm. In fact, as pointed out in [7], under U.S. tax codes, a necessary condition required
to fully benefit tax savings, is that the firm’s EBIT (earnings before interest and taxes)
must cover payments required for coupons. We obtain an explicit form for the tax benefit
claim, which allows us to study monotonicity and convexity of equity function, to find the
endogenous failure level analytically in the case with no payout and to prove its existence
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and uniqueness in the general case. Further, exploiting the linearity of the smooth pasting
condition with respect to the coupon, we are able to study the optimal capital structure of
the firm. Differently from [7], we solve the optimal control problem as an optimal problem
in the set of passage times; the key tool is the Laplace transform of the stopping failure
time [1, 3, 6].

As a measure of the degree of asymmetry, we refer to the ratio between the two
corporate tax rates. Our study shows that tax asymmetry increases the optimal failure
level and reduces the optimal leverage ratio, with a more pronounced effect on optimal
leverage ratios, thus confirming results in [13]. Nevertheless, we find that, as far as the
magnitude is concerned, introducing a payout produces an even more significant reduction
in optimal leverage ratios. Thus the joint effect of tax asymmetries and payouts drops
down optimal leverage to empirically representative values and seems to be a flexible
way to capture differences among firms facing different tax-code provisions. For example
observing firms belonging to different activity sectors, this could explain differences in
observed capital structure decisions, mainly in leverage ratios. The analysis developed in
[2] showed that introducing payouts in a structural model with a unique corporate tax
rate has the effect of reducing both optimal leverage ratio and optimal failure level. In the
present paper we find that this reduction in both optimal leverage and optimal failure level
increases as the degree of asymmetry of the tax schedule rises, meaning as the difference
between the two corporate tax rates is higher. We study both the impact of asymmetry
in tax benefits on optimal capital structure in comparison with a flat tax schedule (i.e. a
unique constant tax rate) as benchmark model, but also how these decisions change as the
asymmetry varies showing two alternative approaches to measure the impact of asymmetry
on corporate decisions. Finally, both optimal total value of the firm and optimal debt
are decreasing functions of asymmetry and payouts: debt becomes less attractive (due to
potential loss of tax benefits) and less assets remain in the firm because of payouts outflows.
We then study optimal capital structure when the switching barrier is an increasing and
linear function of the coupon level, in order to represent a more realistic framework in
which EBIT is considered as a barrier determining a potential loss in coupon payments
deductibility. In such a case a higher profit is needed in order to fully benefit from
tax savings. Given a payout rate, as the optimal coupon decreases for higher degrees of
asymmetry, then also the optimal switching barrier decreases: this trade-off concerning the
potential tax benefits loss leads to empirically representative value in predicted leverage
ratios.

We stress the point that the payout rate and the tax asymmetry parameter have a
deeply different nature from an economic point of view: even if in our model the payout is
exogenously given, we can also recognize that it can be partly modified or chosen by the
firm, even when it is not a result of an endogenous decision (i.e. even if it does not depend
on coupon payments, as in our case). Namely, opposite to this potential choice by the
firm, the corporate tax schedule is imposed to the firm by an external authority. Moreover,
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the corporate tax schedule could be very different depending for example on the sector
in which the firm is operating in. Thus, analyzing the joint effect of these two factors
can be an interesting and flexible way to analyze and improve empirical findings inside
a structural model of credit risk allowing to explain why a high dispersion in observed
leverage ratios exists.

The paper is organized as follows. In Section 2 we introduce the model. We compute
the tax benefit claim. In Section 3 the endogenous failure level is derived and the influence
of tax asymmetry on it is analyzed. The optimal capital structure when the switching
barrier is fixed or it is debt dependent, is achieved in Section 4. Section 5 concludes.

2 The Model

In this section we introduce a structural model of corporate debt in the spirit of [7];
nevertheless, our model exhibits two differences: the model for the firm’s activities includes
a parameter δ which represents a constant fraction of value paid to security holders (e.g.
dividends, see also [2, 9, 15]), further, we consider a corporate tax schedule which is not
flat, meaning we suppose the corporate tax rate being not unique and constant through
time. We derive the value of the tax benefit claim in this framework, following Leland
[7] in modeling tax benefits of debt: asymmetry in corporate tax code provisions becomes
also asymmetry in tax benefits of debt.

We assume an infinite time horizon, as in [7]. This is a reasonable first approxima-
tion for long term corporate debt and enables us to have an analytic framework where
all corporate securities depending on the underlying variable are time independent, thus
obtaining closed form solutions. We consider a firm realizing its capital from both debt
and equity. The firm has only one perpetual debt outstanding, which pays a constant
coupon stream C per instant of time1. This assumption can be justified thinking about
two different scenarios: a debt with very long maturity (in this case the return of principal
has no value) or a debt which is continuously rolled over at a fixed interest rate (as in [9]).
Bankruptcy is triggered endogenously by the inability of the firm to raise sufficient capital
to meet its current obligations. On the failure time T , agents which hold debt claims will
get the residual value of the firm, and those who hold equity will get nothing. Following
Leland [7] we do not consider personal taxes, thus we model the tax benefits claim as a
derivative depending directly on corporate tax rate provisions.

Suppose that firm’s activities value is described by process Vt = V eXt , where Xt

evolves, under the risk neutral probability measure, as

dXt =

�
r − δ − 1

2
σ2

�
dt+ σdWt, X0 = 0, (1)

1Instantaneous coupon payments can be written as C := cF , where F is face value of debt, supposed
to be constant through time, as in Leland [7].
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where W is a standard Brownian motion, r the constant risk-free rate, r, δ and σ > 0.
The term δVt represents the firm’s cash flow: we can think of it as an after-tax net cash
flow before interest, since we only consider tax benefits of debt. When bankruptcy occurs
at stopping time T , a fraction α (0 ≤ α < 1) of firm value is lost (for instance payed to
who takes care of the bankruptcy procedures), the debt holders receive the rest and the
stockholders nothing, meaning that the strict priority rule holds. The failure passage time
is determined when the firm value falls to some constant level VB: define

TVB := inf{t ≥ 0 : Vt = VB}.

The value of VB is endogenously derived and will be determined with an optimal rule later.

In the spirit of Leland we assume that from paying coupons the firm obtains tax
deductions. In [7] the corporate tax rate τ is assumed to be constant; nevertheless, in
Appendix A the author derives the endogenous failure level in the case when there are no
tax benefits for the assets value going under an exogenously specified level. The empirical
analysis of [4] confirms that the corporate tax schedule is asymmetric. Moreover [13]
assumes the hypothesis of a piecewise linear tax function and reports a quite significant
impact of this asymmetry on the optimal leverage ratio. These studies motivate our
extension of Leland’s setting in the direction of a structural model with endogenous default
boundary presenting a more general (even debt dependent) corporate tax schedule.

Following [7, 11] tax benefits can be expressed as a defaultable claim written on the
underlying asset represented by the unlevered value of the firm V . Let τ(·) be the corporate
tax function and F (·) the tax benefits function. Tax benefits of debt can be seen as the
value of a claim written on Vt paying a continuous instantaneous coupon τ(Vt)C if there
is no default and 0 in the event of bankruptcy. We now describe the general scheme to
determine the value of this defaultable claim for a given corporate tax schedule.

Lemma 2.1 For any stopping time T the value of the tax benefits of debt is equal to:

F (V ) = EV

�
e−rTF (VT ) +

� T

0
e−rsτ(Vs)Cds

�
, (2)

where the expectation is taken with respect to the risk neutral probability and we denote

EV [·] := E[·|V0 = V ].

In this section the asymmetric tax benefits schedule is specified through the introduc-
tion of an exogenously given level of firm’s assets value at which the tax deduction changes.
We modify Leland [7] assumption about a unique constant level τ, considering a piecewise
linear model in which two different corporate tax rates τ1, τ2 are in force. We assume that
the deductibility of coupon payment generates tax benefits for all value V ≥ VB, but these
tax savings are reduced when V falls to a specified (exogenous) barrier VS . As the firm
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approaches bankruptcy, it will lose tax benefits. Therefore the corporate tax function is
equal to

τ = τ11(VS ,∞) + τ21(VB ,VS) (3)

depending on the firm’s activities value Vt staying upon the prescribed level VS . Obviously
we assume VS > VB. The tax-sheltering value of interest payments will not be constant
through time: it will be τ1C for V ≥ VS , and τ2C in case VB ≤ V < VS . We assume
τ2 ≤ τ1, meaning loss of tax benefits below VS .

The first passage time at VS is defined

TVS = inf{t ≥ 0 : Vt = VS}. (4)

Note that VTVB
= VB and VTVS

= VS , as the process Vt is continuous.

Using integral representation of tax benefits we can write (2) as:

F (V ) = EV

�
e−rTVS

∧TVBF (VTVS
∧TVB

) +

� TVS
∧TVB

0
e−rsCτ(Vs)ds

�
. (5)

where τ(Vs) is specified by (3).

It is easily seen that in order to compute (5), it is enough to have explicit formulas
for the Laplace transform of a double boundaries passage time. As VB is a failure level,
we impose that tax benefits are completely lost at failure, then the required boundary
condition is F (VB) = 0. Finally we can state the following result.

Theorem 2.2 Suppose that the deduction tax function τ(·) is defined by (3), then the tax

benefits claim F (V ) in (2) is equal to:

F (V ) =
�
A0 +A1V

−λ1 +A2V
−λ2

�
1(VB ,VS)(V ) +

�
B0 +B2V

−λ2

�
1(VS ,∞)(V ), (6)

where

A0 =
τ2C

r
(7)

A1 =
Cλ2V

λ1
S (τ2 − τ1)

r(λ1 − λ2)
, (8)

A2 = −
�
A1V

−λ1
B +

τ2C

r

�
V λ2
B , (9)

B0 =
τ1C

r
, (10)

B2 = A2 +A1
λ1V

λ2−λ1
S

λ2
. (11)

6



and λ1, λ2 are defined as

λ1 =
µ−

�
µ2 + 2rσ2

σ2
, λ2 =

µ+
�
µ2 + 2rσ2

σ2
(12)

with

µ := r − δ − 1

2
σ2. (13)

We discuss the effects of the tax asymmetry assumption on the value of the tax benefit
claim F (V ) as follows. Under the hypothesis τ2 ≤ τ1, it holds A1 > 0, A2 < 0, B2 < 0.
Therefore in both segments V ≥ VS and VB ≤ V < VS , the function F (V ) is strictly
increasing w.r.t. firm’s current assets value V . Further, we note that the tax benefits
value in the segment V ≥ VS is a strictly concave function of V , since B2 is negative. If
the tax rate were always τ2, both above and below VS , we would have

FL(V, τ2) =
τ2C

r
− τ2C

r
VB

λ2V −λ2 ,

which coincides with the result obtained in [7]. We now compare this value with F (V ) in
our framework in case VB ≤ V < VS :

F (V ) = A0 +A1V
−λ1 +A2V

−λ2 ,

with A0, A1, A2 given by Equations (7)-(9). Notice that now, for all assets values below
the switching barrier (but obviously above the failure level VB) the value of the claim
F (V ) exhibits three terms instead of two: while the constant term τ2C

r appears in both
models, in Leland framework the term depending on V −λ1 does not appear. The presence
of A1V −λ1 captures the effect of: i) payouts, since in case δ = 0 we have λ1 = −1; ii) most
important, it captures the possible switching from τ2 to a higher level τ1, thus representing
the value of a possible gain in tax savings, through coefficient A1. This is why it is positive
and increasing w.r.t. V . Coefficient A1 reflects exactly the asymmetry in the corporate
tax schedule; it is increasing w.r.t. both τ2 − τ1 and the switching barrier VS . Coefficient
A2 is instead negative and depends on both the asymmetry of the corporate tax schedule
and the default event.

Remark 2.3 In Appendix A [7] the author proposes a structural model in which the in-

stantaneous tax benefit is zero, if the firm’s value V falls under a prescribed level. We

observe that in the particular case of δ = 0 and τ2 = 0, we recover the same result as in

[7].

We are now ready to complete the description of the corporate capital structure model.
Applying contingent claim analysis in a Black-Scholes setting, given the stopping (failure)
time TVB , the expression for debt value is given by:

D(V, VB, C) = EV

�� TVB

0
e−rsCds+ (1− α)e−rTVBVB

�
. (14)
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We stress that the corporate tax schedule does not affect directly debt value. Corporate
tax provisions have an influence on capital structure decisions since issuing debt allows to
have some tax savings, thus a potential increase in firm’s value. But they do not affect
directly debt value, which depends only on the coupon level and obviously, on the default
event through bankruptcy costs α and the failure level VB. The effect of asymmetry
in the tax scheme will produce an impact on debt value only through the choice of the
endogenous failure level and thus on the optimal coupon equity holders will choose.

The total value of the firm v(V ) consists of three terms: firm’s assets value (unlevered),
plus the value of the tax benefits claim F (V ) given in (6), less the value of the claim on
bankruptcy costs:

v(V, VB, C) = V + F (V )− EV [e
−rTVBαVB]. (15)

Since the total value of the firm can be expressed as the sum of equity and debt values,
finally it is possible to write equity value as:

E(V, VB, C) = v(V, VB, C)−D(V, VB, C). (16)

Equity holders have to define the capital structure of the firm. To this aim, they
have to choose both the endogenous failure level and the optimal amount of debt to issue.
As stressed in [2] these are interrelated decisions which can hardly be separated. Our
approach to the problem is to conduct the analysis in two stages: i) at first we determine
the endogenous failure level, ii) then we find the optimal coupon, given the endogenous
default boundary.

3 Endogenous Failure Level

The aim of this section is to investigate the effects of a different asymmetric corporate
tax schedule on the endogenous failure level chosen by equity holders. We conduct a
detailed analytical study considering the influence of the corporate tax function in (3)
on the firm’s capital structure. Our analysis considers a given and fixed level of coupon
payments, namely C.

3.1 Failure level with exogenous switching barrier

Given the value of the tax benefits claim F (V ) in (6) we can write debt, equity and total
value of the firm. First consider the debt function, which is not directly affected by (3),
since for the moment we are considering VB as a constant level and C is fixed. Debt value
can be seen as the sum of a risk-free debt C/r plus a positive term depending on the risk
of default, thus (14) becomes:

D(V, VB, C) =
C

r
+

�
(1− α)VB − C

r

��
VB

V

�λ2

. (17)
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Further using Theorem 2.2, the total value of the firm defined in (15) is equal to

v(V, VB, C) = V +

�
τ2C

r
+A1V

−λ1 +A2V
−λ2

�
1(VB ,VS)(V ) (18)

+

�
τ1C

r
+B2V

−λ2

�
1(VS ,∞)(V )− αVB

�
VB

V

�λ2

.

Finally from (16) we obtain

E(V, VB, C) = V +

�
τ2C

r
+A1V

−λ1 +A2V
−λ2

�
1(VB ,VS)(V ) (19)

+

�
τ1C

r
+B2V

−λ2

�
1(VS ,∞)(V )− C

r
− (VB − C

r
)

�
VB

V

�λ2

.

Equity function must reflect its nature of an option-like contract. For any C, we have
E(VB, VB, C) = 0 meaning that when V falls to VB there is no equity to cover the firm’s
debt obligations, thus equity holders will chose to default. We first analyze the equity
value for VB ≤ V < VS :

E(V, VB, C) = V − (1− τ2)
C

r
+A1V

−λ1 +

�
−A1V

−λ1
B +

C

r
(1− τ2)− VB

��
V

VB

�−λ2

,

(20)
where A1 defined in (8) is positive if τ2 < τ1. The first term V − (1− τ2)

C
r is the equity

value considering a constant tax-sheltering value of interest payments τ2C, unless limit of
time (when there is no risk of default). Coefficient A1 represents the opportunity-cost of
V being in [VB, VS) instead of [VS ,∞). In fact, considering Leland [7] framework, equity
value is increasing with respect to the corporate tax rate τ : our assumption about the tax
deductibility scheme modifies the unique constant τ introducing an asymmetry. Suppose
V being in [VB, VS ]: this asymmetry becomes an opportunity, since τ2 < τ1. Coefficient
A1 is then positive and increasing w.r.t. τ2−τ1 and decreasing w.r.t. the switching barrier
VS . As the difference τ2 − τ1 increases, the possible gain in tax benefits in the event of
V = VS is greater. As VS becomes higher, coeteris paribus, the probability of V reaching
VS before reaching VB is reduced, thus obtaining a gain in tax benefits becomes less likely
and A1 is lower. The last term is exactly the option to default which is embodied in equity.
Observe that in this case, the option to default will compensate equity holders also for the
tax deductibility asymmetry, through the term −A1V

−λ1
B . Therefore it must hold

−A1V
−λ1
B +

C

r
(1− τ2)− VB > 0. (21)

Analogously we consider the equity value for V ≥ VS :

E(V, VB, C) = V−(1− τ1)C

r
+A1

λ1

λ2
V λ2−λ1
S V −λ2+

�
−A1V

−λ1
B +

C

r
(1− τ2)− VB

��
V

VB

�−λ2

.

(22)
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The term V − (1 − τ1)
C
r represents equity value when there is no risk of default, with

a constant corporate tax rate τ1. The term depending on V −λ2 captures two different
effects: one due to the switching in tax benefits, the other related to default, both arising
in the event of V falling to VS . Observe that A1

λ1
λ2
V λ2−λ1
S is negative, reflecting the

possible partial loss of tax benefits below VS . Its negative effect on equity increases with
an increase in the switching barrier VS and also as a consequence of a higher difference
τ2−τ1. What remains is the option to default, which is activated only if V reaches VS . As
previously, the option to default must have positive value, meaning constraint (21) being
satisfied.

In the following theorem we analyze the verification of constraint (21) to ensure con-
vexity of equity function w.r.t. V .

Theorem 3.1 Suppose that τ2 < τ1, then condition (21) is satisfied for VB < V B such

that
1

1 +A1

C(1− τ2)

r
< V B <

C(1− τ2)

r
.

Remark 3.2 If δ = 0, then condition (21) becomes −A1VB + C
r (1− τ2)− VB > 0, which

is satisfied for

VB <
1

1 +A1

C(1− τ2)

r
. (23)

The convexity condition in [7] is VB < C(1−τ2)
r ; note that

1
1+A1

C(1−τ2)
r < C(1−τ2)

r as A1 > 0.
On the other side, under the hypothesis δ > 0 and a unique constant corporate tax rate

τ1 = τ2, then A1 = 0 and the condition (21) becomes VB < C(1−τ2)
r , as found in [2].

This emphasizes the fact that the difference between these two convexity constraints is due

to asymmetry in tax savings: introducing asymmetry in tax benefits makes the convexity

constraint on VB more tight if compared to the case of a unique constant tax-sheltering

value τ2C. This result does not depend on the payout level.

Theorem 3.1 gives an upper bound for VB; nevertheless, due to limited liability of equity,
the failure level VB cannot be chosen arbitrarily small, but E(V, VB, C) must be non
negative for all values V ≥ VB. To this end we write equity function (20) as:

E(V, VB, C) = f(V,C) + g(V, VB, C),

where

f(V,C) := V − (1− τ2)
C

r
+A1V

−λ1 , (24)

and

g(V, VB, C) :=

�
−A1V

−λ1
B +

C

r
(1− τ2)− VB

��
V

VB

�−λ2

. (25)
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Constraint (21) is needed in order to make the option embodied in equity having positive
value and its value g(V, VB, C) in (25) being a convex and decreasing function of V . The
value g(V, VB, C) increases as V approaches VB, thus compensating equity holders for the
reduction in equity due to a lower V . The function f(V,C) in (24) represents equity value
with no risk of default unless limit of time, when asymmetry in tax benefits is assumed.
Under constraint (21) f is increasing and convex when V ∈ [VB, VS). At point V = VB,
g(V, VB, C) and f(V,C) have the same absolute value but opposite sign. Thus the following
theorem provides a condition such that an increment in V must produce an impact on
equity value without default risk f(V,C) higher than its effect on the option to default
g(V, VB, C). This allows to keep E(V, VB, C) ≥ 0 when the option to default approaches
its exercise instant, i.e. V → VB.

Theorem 3.3 The function V �→ E(V, VB, C) is increasing and strictly convex in VB ≤
V < VS if VB satisfies constraints (21) and

VB(1 + λ2) +A1VB
−λ1(λ2 − λ1) ≥

C(1− τ2)

r
λ2, (26)

Moreover E(V, VB, C) ≥ 0 for V ≥ VB.

Remark 3.4 If δ = 0, constraint (26) becomes

VB ≥ 2(1− τ2)VSC

VS(σ2 + 2r) + 2C(τ1 − τ2)
. (27)

Recalling (23), in order to have equity increasing and convex w.r.t. V , the endogenous

failure level has to satisfy:

2(1− τ2)VSC

VS(σ2 + 2r) + 2C(τ1 − τ2)
≤ VB ≤

�
2 +

σ2

r

�
(1− τ2)VSC

VS(σ2 + 2r) + 2C(τ1 − τ2)
.

We consider the coupon rate C being fixed and maximize equity value in order to find
the endogenous failure level. To this end we impose the smooth-pasting condition (see [7]
footnote 20 and [10] footnote 60):

∂E

∂V
|V=VB = 0. (28)

Theorem 3.5 Suppose constraint (21) holds, then the endogenous failure level VB(C; τ1, τ2; δ)
which satisfies (28) exists and is unique, under the condition

VS ≥ (1− τ1)C

r

λ2

1 + λ2
. (29)
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We note that condition (28) is equivalent to

∂f

∂V
|V=VB = − ∂g

∂V
|V=VB ,

where f and g are defined in (24) and (25). Thus a solution of (28) is an implicit solution
of 2

(1 + λ2) =
λ2C

r
V −1
B

��
VS

VB

�λ1

(τ2 − τ1) + (1− τ2)

�
. (31)

Remark 3.6 The choice of bankruptcy level by (31) also optimizes VB �→ E(V, VB, C).
Under constraints (21) and (29), equity is increasing (and convex) w.r.t. assets value

V if VB ≥ VB(C; τ1, τ2; δ), where VB(C; τ1, τ2; δ) satisfies the smooth pasting condition,

being the minimum failure level that equity holders can choose due to limited liability of

equity. Consider the function g in (25) which is the option to default embodied in equity.

Differentiating equity value w.r.t. VB, we have ∂VBE = ∂VBg which has the same sign of

the decreasing function

VB �→ A1V
−λ1
B (λ1 − λ2) + λ2

C

r
(1− τ2)− VB(1 + λ2).

This function is positive then negative and vanishes at point VB exactly solution to Equa-

tion (31). It gives the optimal exercise time of the option to default embodied in equity.

If δ = 0, explicit solution can be obtained by solving equation (31) with respect to VB

VB(C; τ1, τ2; 0) =
2CVS(1− τ2)

VS(σ2 + 2r) + 2C(τ1 − τ2)
, (32)

thus extending [7] Appendix A (case τ2 = 0). Finally in case τ2 = τ1 =: τ we obtain:

VB(C; τ, τ ; δ) =
λ2C(1− τ)

r(1 + λ2)
, (33)

which is the endogenous failure level in the case of a unique constant tax-sheltering value
of interest payment τC with a payout rate δ. This result extends Equation (14) in [7] to
the case of a non-zero payout rate for firm’s assets value. See [2] for a detailed analysis of
this aspect.

2In particular if we assume a switch to zero tax level, i.e. τ2 = 0, we obtain the optimal failure
VB(C; τ1, 0; δ) as implicit solution of

(1 + λ2) =
λ2C
r

V −1
B

�
1− τ1

�
VS

VB

�λ1
�
. (30)

This result completes the analysis in [9] Appendix B, in the case where we let the maturity T → ∞ since
the authors analyze the switch to zero tax level only in the no-dividend case.
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Remark 3.7 Observe that under constraint (29), the endogenous failure level VB(C; τ1, τ2; 0)
is lower than the switching barrier VS. The following inequality

2(1− τ2)VSC

VS(σ2 + 2r) + 2C(τ1 − τ2)
≤ VS (34)

holds under

VS ≥ 2C(1− τ1)

(σ2 + 2r)
(35)

which is exactly constraint (29) in the case δ = 0.

3.1.1 Effect of corporate tax rate asymmetry on the endogenous failure level

In this paragraph we analyze the impact of the corporate tax function τ(·) defined in (3)
on the endogenous failure level. We fix τ1 and VS and then study the influence of τ2 on the
endogenous failure level, given the coupon C. Introducing asymmetry makes debt more or
less attractive hence it should increase or decrease the optimal leverage ratio. Asymmetry
also makes more or less attractive to keep a loss-making firm alive, hence it should raise
or decrease the endogenous failure level and bring default closer or farer.

In order to work with explicit formulas we consider the no-payout case δ = 0: therefore
λ1 = −1 and λ2 =

2r
σ2 . In the general case we will resort to numerical comparisons.

Let us consider: the endogenous failure level obtained with the constant instantaneous
tax benefits in [7]

VBL(C; τ1; 0) =
2C(1− τ1)

σ2 + 2r
, (36)

the level (32) obtained in the case of switching between two tax levels and, as a particular
case of (32) with τ2 = 0, the switch to zero tax benefits (as in [7] Appendix A)

VB(C; τ1, 0; 0) =
2CVS

VS(σ2 + 2r) + 2τ1C
. (37)

Theorem 3.8 The function

τ2 �→ VB(C; τ1, τ2; 0)

defined by (32) is decreasing. In particular VB(C; τ1, 0; 0) in (37) is greater than VB(C; τ1, τ2; 0)
in (32). Further for any τ1 > τ2

VB(C; τ1, τ2; 0) > VBL(C; τ1; 0), VBL(C; τ2; 0) > VB(C; τ1, τ2; 0).

We can observe that under our asymmetric corporate tax schedule, a higher τ2 in-
creases equity value (for each coupon level C), and reduces the endogenous failure level
VB(C; τ1, τ2; 0), thus, increasing tax deductions could be a way to support firms. Finally
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we conclude that in the model where δ = 0 a higher asymmetry in the tax deductibility
increases the failure level endogenously chosen.

We can introduce θ := τ2
τ1

as a measure of the degree of asymmetry of the corporate
tax schedule: θ = 1 represents Leland framework (no asymmetry), θ = 0 is the maximum
asymmetry case, meaning full loss of tax shelter below VS . Any other case 0 ≤ θ ≤ 1
represents nothing but an intermediate asymmetric scenario. As asymmetry increases,
meaning θ closer to 0, the endogenous failure level VB(C; τ1, τ2; 0) increases for any value
of the exogenous switching barrier. In such a case, in fact, below VS the firm will have
less tax benefits, due to the lower τ2, bringing the endogenous failure level higher.

Remark 3.9 Suppose for a moment τ2 being fixed. Note that the application τ1 �→
VB(C; τ1, τ2; 0) is decreasing. This is in line with a reduction in the degree of asymmetry of

the corporate tax schedule (i.e. θ closer to 1). A higher τ1 allows the firm to have greater

tax savings above VS , bringing equity value higher both above and below (coefficient A1 will

be higher) the switching barrier VS , thus bringing down the endogenous failure level.

The impact of the deductibility asymmetry affects the endogenous failure level also
through the exogenous switching barrier VS . In the no-payout case it is easily seen the
following.

Corollary 3.10 The following result holds: the failure level VB(C; τ1, τ2; 0) in (32) is

increasing (resp. decreasing) with respect to the exogenous barrier VS if τ2 < τ1 (resp.

τ2 > τ1).

Assume that τ2 < τ1. Given a certain degree of asymmetry, i.e. θ being fixed, an higher
VS will increase the endogenous default boundary. Starting from V ≥ VS , the switching
from τ1 to τ2 will be more likely, thus it will be more likely losing some tax benefits. As
VS increases indefinitely, the model approaches Leland framework with a unique constant
tax-sheltering value of interest payments τ2C. Equity holders will lose the opportunity to
switch from τ2 to a higher tax savings region, thus equity will be lower and the endogenous
failure level higher, as shown in Theorem 3.8. This result depends on the hypothesis about
the coupon C being fixed. Our findings are in line with those obtained in a framework
with a flat corporate tax schedule τ2: when the coupon is fixed, the endogenous failure
level is decreasing w.r.t. the corporate tax rate (see [7]).

Observe that a change in θ or a change in VS produce a different effect on the asym-
metry of the tax schedule: we propose to interpret θ as a vertical measure of asymmetry,
VS as horizontal measure. What we mean is that θ modifies the degree of asymmetry, by
acting on the distance between the two corporate tax rates, thus measuring the potential
instantaneous loss of tax benefits at point V = VS . A change in VS represents an horizontal
measure of asymmetry since it modifies the range of firm’s values for which the firm faces
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a higher (lower) deductibility. When θ → 1, or VS → VB, the limit-model is a framework
with a flat corporate tax schedule with a constant corporate tax rate τ1, but the economic
intuition behind is completely different. Consider a coeteris paribus analysis in which all
variables except θ are constant: as θ moves, what is changing is only the measure of the
potential loss in tax benefits, meaning the distance between the two levels. As opposite
case, when only VS varies, the potential loss in tax benefits is still the same, what changes
is the probability of reaching the barrier, thus the likelihood of the potential loss.

3.2 Failure level with debt dependent switching barrier

In subsection 3.1 the switching barrier VS was exogenously given. Nevertheless, this hy-
pothesis is not completely realistic, and we expect that VS will depend on the amount of
debt issued by the firm (see [7] section VI.A). If assets value falls, it is more likely that
profits will be lower than coupon payments, thus the firm will not fully benefit tax savings.
Under U.S. tax codes, a necessary condition required to fully benefit tax savings, is that
the firm’s EBIT (earnings before interest and taxes) must cover payments required for
coupons (see [7]). We now introduce the rate of EBIT and suppose it is related3 to assets
value in the following way:

EBIT := aV − k, (38)

with 0 < a < 1, k > 0, where k represents costs and a is a fraction of firm’s current
assets value. In this case the gross profit falls to 0 when V equals k

a . We assume that the
corporate tax rate is τ1 in case EBIT − C ≥ 0, and τ2 otherwise, with τ2 ≤ τ1. Under
this specification the switching barrier VS depends upon the amount of debt issued by the
firm:

VS = k +
1

a
C. (39)

In this scenario the switching barrier VS increases with both k, C: a higher profit is required
to cover higher costs k and/or higher interest payments, in order to benefit tax savings
from issuing debt.

We now analyze how this different choice of the switching barrier VS affects the en-
dogenous failure level. The endogenous failure level is optimally chosen by equity holders
by applying the smooth pasting condition; when applying the smooth pasting condition,
we differentiate equity w.r.t. V and then evaluate this derivative at point VB. We stress
that definition (39) makes the switching barrier dependent and linear on C, but VS does
not depend on firm’s current assets value V . Thus we can use results from subsection
3.1 about equity value in order to find the default boundary in this case. For δ = 0, the
endogenous failure level becomes:

VB
c(C; τ1, τ2; 0; k, a) =

2C(ak + C)(1− τ2)

(ak + C)(σ2 + 2r) + 2aC(τ1 − τ2)
. (40)

3EBIT is modeled in [7] as a linear function of V , and in [8] as a constant fraction of firm’s assets value.
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Look at increasing costs k or reducing a, the fraction of firm’s value necessary to determine
the rate of EBIT: this will bring default closer, rising the endogenous failure level in (40).
A direct computation shows the following.

Proposition 3.11 The endogenous failure level VB
c(C; τ1, τ2; 0; k, a) defined in (40) is:

i) increasing and concave w.r.t. k;
ii) decreasing and convex w.r.t. a;
iii) increasing and concave w.r.t. C.

Consider a comparative static analysis: if k increases and/or a reduces, EBIT is lower for
each firm’s assets value V·, thus the default boundary is higher since debt has a greater
likelihood of losing its tax benefits, meaning for the firm is more likely to loose potential
value.

We analyze the relation between total coupon payments supported by the firm and the
endogenous failure level chosen by equity holders under this debt dependent asymmetry
framework. A comparison between (32), (36) and (40) shows that under the assumption of
tax benefits asymmetry, the endogenous failure level is an increasing and concave function
of the coupon level, instead of being a linear increasing function of C, as it is in the case of
a unique corporate tax rate. It is still true that the endogenous failure level is independent
of firm’s current assets value V and the fraction (of firm’s value) α which is lost because of
bankruptcy procedures 4. When the corporate tax rate is unique, a change in the coupon
level affects the optimal equity holders’ choice in the same way for all coupon levels. A
debt-dependent asymmetry introduces a different effect through modifying the shape of
the endogenous failure level as function of C. As a consequence, a change in C modifies the
endogenous failure level with different magnitudes, depending on the value of outstanding
debt. If the firm is supporting very high interest payments, a reduction (increase) in the
coupon level will produce a small effect on the failure level, while in case of low coupon
payments, a variation in C will strongly affect the endogenous default boundary, producing
a bigger impact on it.

Figure 1 shows the behavior of the endogenous failure level when different frameworks
are considered: two constant tax benefits cases (alternatively a unique constant τ1 or τ2),
two switching scenarios, one with VS exogenous (VS = 90), the other with the switching
barrier debt dependent (VS

c = 60 + 6C). Leland’s frameworks with constant τ1, τ2 repre-
sent two extreme boundaries between which both the endogenous failure levels obtained
under asymmetric tax benefits lie.

We now compare (32) and (40): they are both increasing and concave w.r.t. coupon
level C. When coupon payments are low, (32) is greater than (40), though their difference

4The independence w.r.t. α means that bankruptcy costs does not directly affect the endogenous
failure level, since the strict priority rule holds. Bankruptcy costs will instead affect the optimal failure
level through the choice of the optimal coupon C∗ which maximizes total firm value.
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Figure 1: Endogenous failure level. This plot shows the behavior of the endogenous failure
level w.r.t. coupon level C. Parameters values are: σ = 0.2, r = 0.05, δ = 0, τ1 = 0.35, θ =
0.4, VS = 90. We then consider k = 60, a = 1

6 , giving VS
c = 60 + 6C.

is very small. As coupon increases, the behavior completely changes: the debt dependent
switching barrier causes the failure level to be higher than in case VS constant, and the
difference between the two levels increases too. The reason is that the debt dependent
switching barrier (39) increases with coupon level, so a firm paying a high coupon C is
facing a higher switching barrier, thus a greater probability of losing tax benefits, since
now EBIT must cover a greater value of interest payments. In summary, let VB(C; τ1, τ2; 0)
in (32) and VB

c(C; τ1, τ2; 0; k, a) in (40), then it holds

VB(C; τ1, τ2; 0) � VB
c(C; τ1, τ2; 0; k, a), if VS � C

a
+ k.

4 Optimal Capital Structure

In this section we determine the optimal capital structure within the model assuming
the corporate tax function (3) in both cases of exogenous and debt dependent switching
barrier, in the general framework with joint asymmetry and payouts. In particular, the
case δ = 0 is analyzed in order to isolate the asymmetry effect on corporate financing
decisions.

We turn to the optimization of the total value of the firm depending on the endogenous
failure level solution of the optimal stopping problem faced by equity holders. Once
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determined the endogenous default boundary, equity holders incorporate this decision
into the total value of the firm. Then maximize it w.r.t. C in order to find the optimal
amount of debt which guarantees the maximum total value of the firm due to the limited
liability constraint. Thus the optimal coupon, namely C∗, maximizes total firm value.
Once found, we replace C∗ in all expressions of previous subsections in order to fully
describe the optimal capital structure.

Finally we analyze each financial variable at its optimal level and study effects of both
corporate tax asymmetry and payout rate on optimal coupon C∗, optimal debt value D∗,
optimal equity value E∗, optimal default boundary VB

∗ and optimal total value of the
firm v∗. We also analyze the optimal yield spread R∗−r where R∗ := C∗

D∗ , and the optimal

leverage ratio, defined as the ratio between optimal debt and optimal total value L∗ := D∗

v∗

(when coupon is at its optimal level C∗).

4.1 Optimal capital structure with exogenous switching barrier

The optimal coupon C∗ must be chosen in order to maximize the total value function

C �→ v(V, VB(C; τ1, τ2; δ), C),

where v(V, VB(C; τ1, τ2; δ), C) is defined in (18). The optimal failure level is not given
in closed form, nevertheless the following result allows us to study the optimal capital
structure.

Proposition 4.1 The function VB �→ C(VB; τ1, τ2; δ) is increasing, where VB is implicitly

given by equation (31).

Remark 4.2 Even if the analytical expression of the optimal coupon C∗ is not given, it

has to satisfy constraints (21) and (26). We numerically determine the optimal coupon

and verify that these constraints are satisfied for our case studies.

When δ = 0 the endogenous failure level is given in closed form by equation (32). Then
we study the optimal capital structure by maximizing the application

C �→ v(V, VB(C; τ1, τ2; 0), C).

Theorem 4.3 The function C �→ v(V, VB(C; τ1, τ2; 0), C) is a concave function achieving

a maximum at point C∗ solution of
∂v(V,VB(C;τ1,τ2;0),C)

∂C = 0, under the condition5 τ1 <
2
3 + τ2

3 . Thus an optimal capital structure exists and is unique.
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B as function of δ, θ. The switching barrier VS is exogenous
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In order to study the asymmetry effect on these variables we analyze θ ≥ 0, measur-
ing the vertical degree of asymmetry of the corporate tax schedule. Notice that θ = 1
(symmetric case) and δ = 0 lead exactly to Leland’s results [7], while θ = 1 and δ �= 0 are
comparable with our analysis in [2].

Asymmetry increases as θ goes to 0, achieving its maximum for θ = 0, representing a
switching from a tax level τ1 to zero-tax benefits for V < VS .

First notice that tax asymmetry raises the optimal failure level V ∗
B(V ; τ1, τ2; δ): for any

value of δ (and for values of VS < V ), as the tax asymmetry increases then the optimal
failure level V ∗

B(V ; τ1, τ2; δ) increases. The opposite happens when considering the payout
influence, given a degree of asymmetry θ. For any fixed value of θ, the optimal failure
level decreases as δ increases from 0 to 0.04. Results are in Table 1, while Figure 2 shows
the behavior of the optimal failure level as function of both δ, θ. From [2] we know that
introducing payouts brings to a lower optimal failure level when the corporate tax rate is
unique and constant through time. When both payouts and asymmetry in tax benefits
are in force, our numerical analysis shows that the final joint effect can be quantitatively
significant. Consider as extreme cases θ = 1, δ = 0 and θ = 0, δ = 0.04: passing from no
asymmetry and no payouts, to a payout rate equal to a 4% of current assets value, brings
to a reduction in optimal failure level of around 8.8%, from 52.82 to 44.02.

Further optimal leverage ratio is strongly affected by asymmetry in the corporate tax
schedule as shown in Figure 3. In order to isolate the asymmetry effect, consider Table 1
in case δ = 0: results are due only to the switching in tax benefits and bring to a reduction
in optimal debt, optimal total value of the firm and also optimal leverage ratios.

Extending the analysis by considering the general case in which both δ > 0, 0 ≤ θ < 1
shows that for each level of payouts, increasing the degree of asymmetry reduces optimal
leverage and this effect is stronger when the the payout rate is higher. Consider the last
column of Table 1: comparing the two extreme cases θ = 1 and θ = 0, the difference in
optimal leverage ratio is 4.5% when δ = 0, 6% when δ = 0.01 and 12% when δ = 0.04.
Tax asymmetry has a negative effect on optimal leverage ratios L∗: for any value of δ
considered, L∗ decrease as the degree of asymmetry increases, that is as θ → 0. The
decrease of the optimal leverage is quantitatively more significant as the payout rate rises.
Analogously, as observed in [2] the capital structure of a firm is strongly affected by
payouts. From [2] we know that introducing payouts in a structural model with a unique
corporate tax rate τ has the effect of reducing optimal leverage ratios. Table 1 allows us
to confirm this result also when the tax schedule is asymmetric. We consider as extreme
cases to compare δ = 0 and δ = 0.04. Considering a unique corporate tax rate means
θ = 1: in such a case we know from [2] that the difference in optimal leverage ratio is
quite 6%. Introducing convexity at θ = 0.8, θ = 0.4, θ = 0: the difference in optimal
leverage becomes respectively 7%, 11% and 13%. A higher payout lowers the optimal
total value of the firm v∗, since a lower debt issuance can be supported because less assets

5This condition is always satisfied with our parameter values, since we always consider τ1 < 2
3 .
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remain in the firm. As a consequence, this will bring down leverage ratios. But also the
asymmetry effect is to reduce leverage ratios, since the potential loss in tax benefits due
to the existence of the switching barrier makes debt less attractive: considering a scenario
where both effects exist, will bring to a strong reduction in predicted optimal total value
of the firm, optimal debt and optimal leverage ratios. We now consider Leland [7] case,
i.e. θ = 1, δ = 0, and compare it with a scenario in which both payouts and asymmetry
exists, meaning θ = 0, δ = 0.04 in order to capture the joint effect of these two realistic
generalizations. Observe that moving from no asymmetry and no payouts, to a payout
rate equal to a 4% of current assets value V , leads to a dramatic reduction in optimal
leverage: in such a case, this joint influence of δ, θ brings to an optimal leverage ratio of
57.36%, with a significant reduction of 17% from Leland result of a 75%-leveraged firm,
leading to a value which is more in line with historical norms6. This strong impact on
optimal leverage ratios suggests that asymmetry and payouts seem to be important factors
involved in the determinacy of corporate capital structure decisions.

Figure 4 shows the behavior of optimal coupon C∗ as function of δ and θ. Observe
that for each degree of convexity 0 ≤ θ < 1 the optimal coupon is decreasing w.r.t. δ,
extending results in [2] to the case of asymmetric corporate tax schedule. We stress that
in this general framework where both payouts and an asymmetric tax scheme interact, the
negative effect of payouts on C∗ is greater as the asymmetry in tax benefits increases, i.e.
as θ → 0. From Figure 4 we can also observe that the optimal coupon C∗ decreases as
θ → 0 for each level of the payout rate δ. In fact introducing asymmetry in tax benefits
makes debt less attractive for the firm, thus leading to a not negligible reduction in the
optimal coupon level choice. The decrease in C∗ due to the asymmetric tax benefits scheme
is higher as payouts increase, as we note considering the slope in Figure 4 w.r.t. θ for each
level of δ. Payouts and asymmetry in tax benefits influence each other by increasing the
magnitude of their own effects on the optimal coupon, bringing to a joint influence on
optimal coupon which is quantitative significant. To analyze the interaction between δ
and θ on C∗ consider for example three alternative scenarios θ = 1, 0.4, 0: when δ goes
from 0 to 0.04, the optimal coupon reduces from 6.5% to 6.23% in case θ = 1, from 6.03%
to 5.2% in case θ = 0.4, from 5.78% to 4.32% in case θ = 0. The reduction in C∗ due to
an increased payout is considerably higher as asymmetry in tax benefits increases: when
tax benefits are completely lost under VS the reduction of optimal coupon is more than 5
times the reduction in case of a constant tax schedule. Our analysis in this paper confirms
our results in [2] and moreover extend their validity under asymmetry in tax benefits.
Adding to this, the contribution of the present work is also to show how optimal capital
structure is much more affected by payouts when considering a more realistic framework
allowing also for asymmetry in the corporate tax schedule.

As it concerns optimal equity value and optimal spreads we note that the joint effect of
asymmetry and payouts raises both optimal equity and optimal spreads. We can explain
this as a consequence of two main insights arising from the model.

6Leland [7] in his Section D observes that a leverage of 52% is quite in line with historical norms.
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Table 1: Effect of payouts and asymmetry in the tax schedule on all financial variables
at their optimal level when the switching barrier VS is exogenous. Base case parameter
values: V0 = 100, σ = 0.2, τ1 = 0.35, r = 6%, α = 0.5, VS = 90 and three different cases:
δ = 0, δ = 0.01, δ = 0.04. Leverage is in percentage (%), spreads in basis points (bps).

δ = 0
θ C∗ D∗ R∗ − r E∗ V ∗

B v∗ L∗

0 5.784 84.149 87.389 35.519 56.435 119.668 70.318 %
0.1 5.844 85.136 86.467 35.253 56.142 120.389 70.717 %
0.2 5.906 86.163 85.489 34.975 55.837 121.138 71.128 %
0.3 5.971 87.234 84.454 34.683 55.518 121.918 71.552 %
0.4 6.038 88.352 83.357 34.378 55.186 122.730 71.989 %
0.5 6.107 89.519 82.195 34.057 54.838 123.576 72.441 %
0.6 6.179 90.741 80.965 33.719 54.474 124.461 72.908 %
0.7 6.254 92.022 79.660 33.363 54.092 125.386 73.391 %
0.8 6.333 93.367 78.278 32.987 53.691 126.355 73.893 %
0.9 6.415 94.783 76.812 32.590 53.267 127.372 74.414 %
1 6.501 96.274 75.256 32.167 52.820 128.442 74.956 %

δ = 0.01
θ C∗ D∗ R∗ − r E∗ V ∗

B v∗ L∗

0 5.539 79.524 96.489 38.047 53.868 117.571 67.639 %
0.1 5.613 80.658 95.868 37.683 53.604 118.341 68.157 %
0.2 5.689 81.838 95.167 37.306 53.325 119.144 68.688 %
0.3 5.768 83.069 94.384 36.914 53.030 119.983 69.234 %
0.4 5.850 84.355 93.515 36.506 52.720 120.861 69.795 %
0.5 5.935 85.701 92.554 36.080 52.391 121.781 70.373 %
0.6 6.024 87.112 91.497 35.634 52.043 122.746 70.969 %
0.7 6.116 88.594 90.336 35.166 51.673 123.760 71.585 %
0.8 6.212 90.155 89.067 34.674 51.281 124.829 72.223 %
0.9 6.313 91.802 87.680 34.154 50.865 125.957 72.884 %
1 6.419 93.545 86.169 33.604 50.420 127.149 73.571 %

δ = 0.04
θ C∗ D∗ R∗ − r E∗ V ∗

B v∗ L∗

0 4.637 63.933 125.230 47.526 44.023 111.459 57.360 %
0.1 4.772 65.630 127.059 46.690 44.048 112.321 58.431 %
0.2 4.911 67.390 128.708 45.844 44.043 113.234 59.514 %
0.3 5.054 69.220 130.171 44.981 44.007 114.201 60.612 %
0.4 5.203 71.129 131.439 44.100 43.942 115.229 61.729 %
0.5 5.357 73.129 132.503 43.194 43.845 116.323 62.867 %
0.6 5.517 75.230 133.352 42.261 43.716 117.491 64.031 %
0.7 5.684 77.447 133.974 41.292 43.553 118.739 65.224 %
0.8 5.860 79.794 134.354 40.284 43.356 120.078 66.452 %
0.9 6.044 82.291 134.477 39.227 43.121 121.518 67.719 %
1 6.239 84.957 134.326 38.114 42.847 123.072 69.031 %

First, when payouts are introduced, less assets remain in the firm, thus making possible
only a lower optimal debt issuance. Adding to this, asymmetry makes debt less attractive,
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Table 2: Effect of a change in the vertical degree of asymmetry of the corporate tax
schedule on financial variables at optimal leverage ratio as θ → 0 when VS is exogenous.
We report the sign of change in each variable as the degree of asymmetry increases.

Fin. Var. C∗ D∗ R∗ − r E∗ V ∗
B v∗ L∗

θ → 0 < 0 < 0 > 0 > 0 > 0 < 0 < 0

due to a possible switching to lower tax benefits, thus a potential loss of value has to be
taken into account. As a consequence, the joint effect is to reduce both the optimal coupon
C∗ and the optimal amount7 of debt D∗.

Equity value increases at its optimal level due to the joint effect of δ, θ on both C∗, V ∗
B:

recall that the optimal (endogenous) failure level increases as the degree of asymmetry is
higher.

Secondly, we can also think about the joint effect of payouts and asymmetry in tax
benefits as something which contributes to increase the average riskiness of the firm and
moreover makes bankruptcy more likely. This is why, despite lower optimal leverage ratios,
optimal spreads increase, in line with [7] suggestions. When θ → 0, the potential loss in
tax benefits due to passing from τ1 to τ2 increases.

Optimal debt is lower, equity higher but the first effect always dominates the second
one, bringing to lower optimal total values of the firm. In fact payouts and corporate
tax asymmetry increase the likelihood of default. As debt holders must be compensated,
then optimal spreads predicted by this model are considerably higher w.r.t. the case
θ = 1, δ = 0, capturing all these economic insights.

Table 2 reports the behavior of financial variables at their optimal level when the
exogenous switching barrier VS and the payout rate δ are fixed, while the vertical degree
of asymmetry increases, i.e. θ → 0, aiming at isolating and capturing only this asymmetry
influence on optimal capital structure decisions made by the firm in a comparative static
analysis.

Concerning the asymmetry of the corporate tax schedule a similar analysis could be
done analyzing how optimal capital structure decisions are affected when the exogenous
switching barrier VS moves, meaning when the horizontal degree of asymmetry changes,
fixing both θ and the payout rate δ. Numerical results show that different values of the
barrier can significantly modify optimal choices, meaning the corporate tax schedule is
an important determinant in leverage decisions. Table 3 shows numerical results for this

7As noted in [7] for δ = 0, and also supported by results in [2] for δ > 0, the firm will always chose
a coupon level which is lower than that one corresponding to the maximum capacity of debt. As a
consequence, a lower coupon means a lower debt value. Moreover, as in [7] we are assuming the face value
of debt being constant.
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case, Table 4 reports only the qualitative behavior of all financial variables at their optimal
level as VS increases. The switching barrier being exogenously given, results show in which
direction a higher VS will move optimal capital structure decisions.

A possible explanation of what we observe in Table 4 could be that, coeteris paribus,
as VS rises (decreases), the horizontal degree of asymmetry changes. As extreme case, our
framework tends to a limit-model in which the tax sheltering value of interest payments is
constant and equal to the lower τ2C (higher τ1C). And this represents the limit-model for
each degree of asymmetry θ and payout level δ. A reduction (increase) in the corporate tax
rate produces exactly the effects shown by our results: each variable at its own optimal
level decreases (increases), except equity value which instead rises (reduces). And this
result is robust w.r.t. each payout level. The behavior we find in this limit-model is in
line with [7] Table II, where δ = 0: all variables except equity are increasing w.r.t. the
constant corporate tax rate τ . Moreover, when payouts are introduced in a flat corporate
tax schedule model, results are still in line with [2]. This behavior of financial variables
holds for each level of payout δ and each vertical degree of asymmetry θ: what is different
among alternative scenarios is only the magnitude of the effect, obviously depending on
the joint influence. The joint influence is higher as payouts increase and θ → 0. Consider
as an example a switching barrier of 95: in case δ = 0.04 and θ = 0 the model predicts a
56% optimal leverage, while in case δ = 0 and θ = 0.8 this optimal ratio is around 73%.
This second case is very close to Leland’s results [7] with constant τ2, and the difference
in leverage is quite negligible, i.e. 2%, while the first case brings to a huge 19%-reduction
in leverage ratios.

4.2 Optimal capital structure with debt dependent switching barrier

In this section we study the optimal capital structure when the switching barrier is in-
creasing with coupon C, being defined as VS := k + 1

aC.

If δ = 0, we determine the optimal capital structure by substituting the endogenous
failure level VB

c(C; τ1, τ2; 0; k, a) obtained in (40) into the total value of the firm v and
then maximizing it w.r.t. C. This produces the optimal coupon C∗, allowing to analyze
optimal leverage and optimal capital structure decisions as reported in Table 5. In the
general case δ > 0 we do not have a closed form for the endogenous failure level, and the
smooth pasting condition is not linear w.r.t. C, since also the switching barrier depends on
coupon payments. Thus we provide a numerical analysis of the optimal capital structure
in this subsection.

The peculiarity of this model is that as the optimal coupon decreases for higher vertical
degree of asymmetry θ → 0, then also the optimal switching barrier V ∗

S decreases, meaning
that also the horizontal degree of asymmetry is changed. From the opposite point of view,
we observe that as θ → 1 the debt dependent switching barrier approaches current firm’s
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Table 3: Effect of asymmetry in the tax schedule on all financial variables at optimal
level. Base case parameter values: V0 = 100, σ = 0.2, τ1 = 0.35, r = 6%, α = 0.5,
VS varying from 80 to 95 and different scenarios for payouts and degree of asymmetry θ:
δ = 0, θ = 0.8, δ = 0.01, θ = 0.4, δ = 0.04, θ = 0. Leverage is in percentage (%), spreads
in basis points (bps).

δ = 0, θ = 0.8
VS C∗ D∗ R∗ − r E∗ V ∗

B v∗ L∗

85 6.371 93.831 78.983 32.818 53.810 126.649 74.087 %
86 6.363 93.736 78.845 32.855 53.787 126.591 74.046 %
87 6.356 93.642 78.705 32.891 53.763 126.533 74.006 %
88 6.348 93.549 78.564 32.925 53.739 126.474 73.967 %
89 6.340 93.458 78.422 32.957 53.715 126.415 73.930 %
90 6.333 93.367 78.278 32.987 53.691 126.355 73.893 %
91 6.325 93.278 78.132 33.017 53.665 126.295 73.857 %
92 6.318 93.189 77.985 33.044 53.640 126.234 73.823 %
93 6.311 93.102 77.837 33.070 53.614 126.172 73.789 %
94 6.303 93.015 77.686 33.095 53.587 126.110 73.757 %
95 6.296 92.929 77.534 33.119 53.560 126.047 73.725 %

δ = 0.01, θ = 0.4
VS C∗ D∗ R∗ − r E∗ V ∗

B v∗ L∗

85 5.971 85.731 96.453 35.908 53.168 121.640 70.480 %
86 5.946 85.448 95.868 36.037 53.080 121.485 70.336 %
87 5.922 85.168 95.281 36.161 52.992 121.330 70.196 %
88 5.898 84.894 94.694 36.280 52.902 121.174 70.059 %
89 5.874 84.622 94.106 36.395 52.812 121.018 69.926 %
90 5.850 84.355 93.515 36.506 52.720 120.861 69.795 %
91 5.827 84.091 92.923 36.613 52.626 120.704 69.667 %
92 5.804 83.830 92.328 36.716 52.531 120.546 69.542 %
93 5.781 83.572 91.732 36.816 52.435 120.388 69.419 %
94 5.758 83.316 91.132 36.912 52.338 120.228 69.299 %
95 5.736 83.063 90.530 37.005 52.238 120.068 69.179 %

δ = 0.04, θ = 0
VS C∗ D∗ R∗ − r E∗ V ∗

B v∗ L∗

85 4.848 66.084 133.629 46.254 45.218 112.339 58.826 %
86 4.804 65.635 131.884 46.525 44.976 112.160 58.519 %
87 4.760 65.196 130.174 46.787 44.737 111.982 58.220 %
88 4.718 64.766 128.497 47.040 44.498 111.806 57.927 %
89 4.677 64.346 126.850 47.286 44.260 111.632 57.641 %
90 4.637 63.933 125.230 47.526 44.023 111.459 57.360 %
91 4.597 63.528 123.636 47.759 43.786 111.287 57.085 %
92 4.558 63.129 122.065 47.987 43.549 111.116 56.814 %
93 4.520 62.736 120.515 48.210 43.312 110.946 56.546 %
94 4.483 62.348 118.985 48.428 43.075 110.776 56.283 %
95 4.446 61.965 117.473 48.643 42.838 110.608 56.022 %
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Table 4: Effect of a change in the horizontal degree of asymmetry of the corporate tax
schedule on financial variables at optimal leverage ratio as VS increases when θ and δ are
fixed. We report the sign of change in each variable as VS increases.

Fin. Var. C∗ D∗ R∗ − r E∗ V ∗
B v∗ L∗

VS � < 0 < 0 < 0 > 0 < 0 < 0 < 0

activities value V : in the limit, for θ = 1, asymmetry disappears, meaning the corporate
tax schedule tends to a flat one.

If compared to the case considered in previous subsection, where VS is exogenously
given, this more realistic framework allows to analyze the joint effect of a change in both
the vertical and horizontal degrees of asymmetry of the corporate tax schedule. As θ
moves, the optimal coupon changes, and this in turns modifies the optimal switching
barrier VS

∗. A change in the vertical degree of asymmetry will affect optimal capital
structure decisions, both directly and indirectly, in this last case by changing the range of
firm’s values for which tax benefits depend alternatively on τ1, τ2.

When the switching barrier depends on the amount of debt issued, a higher profit
is needed in order to have higher coupon payments fully deductible. Recall that we are
assuming EBIT has to cover coupon payments in order to benefit from tax savings. In
this framework, greater debt has a greater likelihood of losing its tax benefits, and optimal
leverage drops significantly. This reduction is quantitatively higher in comparison to the
case VS being exogenously given, for each level of payout. The decrease in optimal leverage
is a 19%-reduction in case δ = 0.04, notably higher than the 12% increase obtained in the
case VS fixed. Leverage can reach a 52% in line with historical norms (see [7]). Table 6
shows that optimal credit spreads decreases in this scenario, reflecting the lesser leverage,
in line with suggestions in [7]. In this simplified framework we model EBIT as a linear
function of V and this allows to show that operational costs could be another variable to
analyze in order to explain observed leverage ratios. As k and/or a rise, this will affect
the optimal amount of debt issued, since a higher profit is necessary to fully benefit from
coupon deductibility. An increase in k and/or a will drop predicted leverage.

5 Conclusions

We have extended a structural model with endogenous bankruptcy starting from Leland
framework [7] in two main directions: introducing a payout rate and an asymmetric corpo-
rate tax schedule. Rather than considering a flat tax scheme, i.e. a unique corporate tax
rate, an asymmetric tax code provisions allowing for a switching in corporate tax rates is
considered. The switching from a corporate tax rate to the other is determined by the firm
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Table 5: Effect of payouts and asymmetry in the tax schedule on all financial variables at
their optimal level when the switching barrier VS is debt dependent. Base case parameter
values: V0 = 100, σ = 0.2, τ1 = 0.35, r = 6%, α = 0.5, k = 60, a = 1/6. The exogenous
barrier is set at VS = 90. Leverage is in percentage (%), spreads in basis points (bps).

δ = 0
θ C∗ D∗ R∗ − r E∗ V ∗

B v∗ L∗ VS
∗

0 5.079 76.816 61.192 42.294 50.969 119.110 64.491% 90.474
0.1 5.184 78.286 62.185 41.474 51.086 119.760 65.369% 91.104
0.2 5.296 79.847 63.270 40.608 51.221 120.455 66.288% 91.776
0.3 5.414 81.487 64.399 39.712 51.361 121.199 67.234% 92.484
0.4 5.539 83.219 65.592 38.779 51.511 121.998 68.213% 93.234
0.5 5.673 85.065 66.903 37.795 51.683 122.860 69.238% 94.038
0.6 5.815 87.015 68.275 36.776 51.861 123.791 70.292% 94.890
0.7 5.968 89.102 69.795 35.700 52.066 124.802 71.394% 95.808
0.8 6.133 91.336 71.475 34.568 52.298 125.905 72.544% 96.798
0.9 6.310 93.720 73.283 33.392 52.547 127.112 73.730% 97.860
1.0 6.501 96.274 75.256 32.167 52.820 128.442 74.956% 99.006

δ = 0.01
θ C∗ D∗ R∗ − r E∗ V ∗

B v∗ L∗ VS
∗

0 4.855 72.545 69.236 44.808 48.414 117.353 61.818% 89.130
0.1 4.968 74.100 70.447 43.922 48.542 118.022 62.785% 89.808
0.2 5.088 75.745 71.729 42.993 48.682 118.738 63.792% 90.528
0.3 5.216 77.492 73.102 42.016 48.835 119.508 64.843% 91.296
0.4 5.352 79.342 74.545 40.995 48.998 120.338 65.933% 92.112
0.5 5.498 81.318 76.108 39.917 49.180 121.236 67.075% 92.988
0.6 5.655 83.431 77.804 38.780 49.383 122.211 68.268% 93.930
0.7 5.823 85.683 79.599 37.592 49.598 123.275 69.506% 94.938
0.8 6.006 88.115 81.611 36.326 49.848 124.441 70.808% 96.036
0.9 6.203 90.720 83.755 35.006 50.114 125.726 72.157% 97.218
1.0 6.419 93.545 86.169 33.604 50.420 127.149 73.571% 98.514

δ = 0.04
θ C∗ D∗ R∗ − r E∗ V ∗

B v∗ L∗ VS
∗

0 4.121 58.897 99.700 53.172 39.483 112.068 52.554% 84.726
0.1 4.263 60.709 102.201 52.060 39.714 112.769 53.835% 85.578
0.2 4.416 62.651 104.860 50.877 39.964 113.528 55.185% 86.496
0.3 4.581 64.732 107.682 49.620 40.233 114.352 56.608% 87.486
0.4 4.758 66.955 110.622 48.296 40.511 115.252 58.095% 88.548
0.5 4.951 69.361 113.804 46.877 40.818 116.238 59.672% 89.706
0.6 5.161 71.959 117.210 45.364 41.148 117.323 61.334% 90.966
0.7 5.391 74.782 120.897 43.744 41.510 118.526 63.093% 92.346
0.8 5.644 77.858 124.910 42.008 41.905 119.866 64.954% 93.864
0.9 5.925 81.235 129.362 40.135 42.349 121.370 66.932% 95.550
1.0 6.239 84.957 134.326 38.114 42.847 123.072 69.031% 97.434

value crossing i) an exogenous barrier, ii) a debt dependent switching barrier (allowing
to model EBIT). We investigate the joint effects of this corporate tax scheme and pay-
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Table 6: Effect of a change in the degree of asymmetry of the corporate tax schedule on
financial variables at optimal leverage ratio as θ → 0 when VS is debt dependent. Results
hold for each level of the payout rate δ ≥ 0. We report the sign of change in each variable
as θ → 0.

Fin. Var. C∗ D∗ R∗ − r E∗ V ∗
B v∗ L∗

θ → 0 < 0 < 0 < 0 > 0 < 0 < 0 < 0

outs on optimal default level and optimal capital structure. Our results support [4], [13]
suggestion that tax-code provisions cannot be ignored when studying corporate financing
decisions. Our findings are in line with [4]: when the corporate tax rate is higher, observed
leverage ratios are higher. Nevertheless our model also analyzes how a change in tax-code
provisions can affect a single firm’s corporate decisions. The general result is that asym-
metry always lowers optimal debt, optimal leverage ratios and the maximum total value
of the firm since less tax savings (actual and/or potential) are available, meaning there is
always a loss of potential value for the firm8. We observe that all financial variables at
their optimal level are influenced by this asymmetric tax schedule. Our analysis extends
[2] by showing how optimal capital structure is much more affected by the introduction of
a payout rate δ > 0 inside a more realistic framework allowing for asymmetry in tax-code
provisions. These two factors influence each other with a resulting quantitative huge joint
effect on optimal debt and leverage. The degree of vertical asymmetry in the corporate
tax schedule (θ := τ2

τ1
) is a parameter imposed to the firm by external authorities and

can vary i) strongly depending on the sector in which the firm is operating in, ii) in time,
for example to encourage investments. Thus, our analysis provides a way to measure the
economic influence (from both a qualitative and quantitative point of view) of such an im-
portant and external factor on internal and endogenous optimal choices made by the firm.
Moreover, we also analyze effects on corporate decisions produced by its joint influence
with payout rates, which are supposed to be constant (but we know that they should be
even partly modified by the firm).

The economic insight we want to give is that this simple model is flexible to analyze
the impact of many factors on optimal capital structure decisions, providing a framework
to develop in the direction of a more empirical research, allowing to explain differences in
observed leverage among firms facing different tax-code provisions.

8As in Leland [7] this model does not consider tax loss carryforwards which could be an interesting
point to develop, since they will introduce path dependence, making the model even more realistic.

29



References

[1] L.H.R. Alvarez. Reward functionals, salvage values, and optimal stopping. Mathe-

matical Methods of Operations Research, 54:315–337, 2001.

[2] F. Barsotti, M.E. Mancino, and M. Pontier. Capital structure with firm’s net cash
payouts. In IV International MAF Conference - Mathematical and Statistical Methods

for Actuarial Sciences and Finance, Quantitative Finance Series. Springer, 2011.

[3] H.U. Gerber and E.S.W. Shiu. Martingale approach to pricing perpetual american
options. ASTIN Bulletin, 24:195–220, 1994.

[4] J.R. Graham and C.W. Smith. Tax incentives to hedge. The Journal of Finance,
54:2241–2262, 1999.

[5] I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus. Springer,
Berlin, Heidelberg, New York, 1988.

[6] A.E. Kyprianou and M.R. Pistorius. Perpetual options and canadization through
fluctuation theory. The Annals of Applied Probability, 13(3):1077–1098, 2003.

[7] H.E. Leland. Corporate debt value, bond covenant, and optimal capital structure.
The Journal of Finance, 49:1213–1252, 1994.

[8] H.E. Leland. Agency costs, risk management, and capital structure. The Journal of

Finance, 53:1213–1243, 1998.

[9] H.E. Leland and K.B. Toft. Optimal capital structure, endogenous bankruptcy and
the term structure of credit spreads. The Journal of Finance, 51:987–1019, 1996.

[10] R.C. Merton. A rational theory of option pricing. Bell Journal of Economics and

Management Science, 4:141–183, 1973.

[11] R.C. Merton. On the pricing of corporate debt: The risk structure of interest rates.
The Journal of Finance, 29:449–470, 1974.

[12] F. Modigliani and M. Miller. The cost of capital, corporation finance and the theory
of investment. American Economic Review, 48:267–297, 1958.

[13] S. Sarkar. Can tax convexity be ignored in corporate financing decisions? Journal of

Banking & Finance, 32:1310–1321, 2008.

[14] S. Sarkar and L. Goukasian. The effect of tax convexity on corporate investment
decisions and tax burdens. Journal of Public Economic Theory, 8(2):293–320, 2006.

[15] M. Uhrig-Homburg. Cash-flow shortage as an endogenous bankruptcy reason. Journal
of Banking & Finance, 29:1509–1534, 2005.

30


